使用 Supabase 和 pgvector 实现高效的向量存储与查询

老铁们,今天我们来聊聊如何使用 Supabase 和 pgvector 打造一个强大的向量存储系统。Supabase 是一个开源的 Firebase 替代方案,它基于 PostgreSQL 构建,提供了强大的 SQL 查询功能。同时,Postgres 自身也是一个非常灵活的关系型数据库管理系统。我们将结合 OpenAI 的嵌入式模型来构建一个高效的文档搜索解决方案。

技术背景介绍

Supabase 中的向量存储基于 pgvector 扩展,这使得我们能够处理高维度的嵌入向量。为了增强向量存储的功能,我们需要安装 langchain-community 库,它提供了与 Supabase 和 OpenAI 嵌入模型的集成。

原理深度解析

我们将通过以下几个步骤在 Supabase 中实现文档的相似性搜索:

  1. 启用 pgvector 扩展: 使 PostgreSQL 能够处理向量数据。
  2. 创建文档存储表: 存储文档的内容、元数据和嵌入向量。
  3. 创建搜索函数: 根据给定的查询向量,返回最相似的文档。

下面是实现这些步骤的 SQL 和 Python 代码示例:

-- 启用 pgvector 扩展
create extension if not exists vector;

-- 创建存储文档的表
create table documents (
    id uuid primary key,
    content text, -- 文档内容
    metadata jsonb, -- 文档元数据
    embedding vector (1536) -- 嵌入向量
)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值