老铁们,今天我们来聊聊如何使用 Supabase 和 pgvector 打造一个强大的向量存储系统。Supabase 是一个开源的 Firebase 替代方案,它基于 PostgreSQL 构建,提供了强大的 SQL 查询功能。同时,Postgres 自身也是一个非常灵活的关系型数据库管理系统。我们将结合 OpenAI 的嵌入式模型来构建一个高效的文档搜索解决方案。
技术背景介绍
Supabase 中的向量存储基于 pgvector 扩展,这使得我们能够处理高维度的嵌入向量。为了增强向量存储的功能,我们需要安装 langchain-community
库,它提供了与 Supabase 和 OpenAI 嵌入模型的集成。
原理深度解析
我们将通过以下几个步骤在 Supabase 中实现文档的相似性搜索:
- 启用 pgvector 扩展: 使 PostgreSQL 能够处理向量数据。
- 创建文档存储表: 存储文档的内容、元数据和嵌入向量。
- 创建搜索函数: 根据给定的查询向量,返回最相似的文档。
下面是实现这些步骤的 SQL 和 Python 代码示例:
-- 启用 pgvector 扩展
create extension if not exists vector;
-- 创建存储文档的表
create table documents (
id uuid primary key,
content text, -- 文档内容
metadata jsonb, -- 文档元数据
embedding vector (1536) -- 嵌入向量
)