13 计算机视觉-代码详解

13.2 微调

为了防止在训练集上过拟合,有两种办法,第一种是扩大训练集数量,但是需要大量的成本;第二种就是应用迁移学习,将源数据学习到的知识迁移到目标数据集,即在把在源数据训练好的参数和模型(除去输出层)直接复制到目标数据集训练。

# IPython魔法函数,可以不用执行plt .show()
%matplotlib inline
import os
import torch
import torchvision
from torch import nn
from d2l import torch as d2l

13.2.1 获取数据集

#@save
d2l.DATA_HUB['hotdog'] = (d2l.DATA_URL + 'hotdog.zip',
                         'fba480ffa8aa7e0febbb511d181409f899b9baa5')

data_dir = d2l.download_extract('hotdog')
train_imgs = torchvision.datasets.ImageFolder(os.path.join(data_dir, 'train'))
test_imgs = torchvision.datasets.ImageFolder(os.path.join(data_dir, 'test'))
hotdogs = [train_imgs[i][0] for i in range(8)]
not_hotdogs = [train_imgs[-i-1][0] for i in range(8)]
# 展示2行8列矩阵的图片,共16张
d2l.show_images(hotdogs+not_hotdogs,2,8,scale=1.5)
# 使用RGB通道的均值和标准差,以标准化每个通道
normalize = torchvision.transforms.Normalize(
    [0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
# 图像增广
train_augs = torchvision.transforms.Compose([
    torchvision.transforms.RandomResizedCrop(224),
    torchvision.transforms.RandomHorizontalFlip(),
    torchvision.transforms.ToTensor(),
    normalize])
test_augs = torchvision.transforms.Compose([
    torchvision.transforms.Resize([256, 256]),
    torchvision.transforms.CenterCrop(224),
    torchvision.transforms.ToTensor(),
    normalize])

 13.2.2 初始化模型

# 自动下载网上的训练模型
finetune_net = torchvision.models.resnet18(pretrained=True)
# 输入张量的形状还是源输入张量大小,输入张量大小改为2
finetune_net.fc = nn.Linear(finetune_net.fc.in_features, 2)
nn.init.xavier_uniform_(finetune_net.fc.weight);

13.2.3 微调模型

# 如果param_group=True,输出层中的模型参数将使用十倍的学习率
# 如果param_group=False,输出层中模型参数为随机值
# 训练模型
def train_fine_tuning(net, learning_rate, batch_size=128, num_epochs=5,
                      param_group=True):
    train_iter = torch.utils.data.DataLoader(torchvision.datasets.ImageFolder(
        os.path.join(data_dir, 'train'), transform=train_augs),
        batch_size=batch_size, shuffle=True)
    test_iter = torch.utils.data.DataLoader(torchvision.datasets.ImageFolder(
        os.path.join(data_dir, 'test'), transform=test_augs),
        batch_size=batch_size)
    devices = d2l.try_all_gpus()
    loss = nn.CrossEntropyLoss(reduction="none")
    if param_group:
        params_1x = [param for name, param in net.named_parameters()
             if name not in ["fc.weight", "fc.bias"]]
        # params_1x的参数使用learning_rate学习率, net.fc.parameters()的参数使用0.001的学习率
        trainer = torch.optim.SGD([{'params': params_1x},
                                   {'params': net.fc.parameters(),
                                    'lr': learning_rate * 10}],
                                lr=learning_rate, weight_decay=0.001)
    else:
        trainer = torch.optim.SGD(net.parameters(), lr=learning_rate,
                                  weight_decay=0.001)
    d2l.train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs,
                   devices)
train_fine_tuning(finetune_net, 5e-5)

13.3 目标检测和边界框

有时候不仅要识别图像的类别,还需要识别图像的位置。在计算机视觉中叫做目标识别或者目标检测。这小节是介绍目标检测的深度学习方法。

%matplotlib inline
import torch
from d2l import torch as d2l
#@save
def box_corner_to_center(boxes):
    """从(左上,右下)转换到(中间,宽度,高度)"""
    x1, y1, x2, y2 = boxes[:, 0], boxes[:, 1], boxes[:, 2], boxes[:, 3]
    # cx,xy,w,h的维度是n
    cx = (x1 + x2) / 2
    cy = (y1 + y2) / 2
    w = x2 - x1
    h = y2 - y1
    # torch.stack()沿着新维度对张量进行链接。boxes最开始维度是(n,4),axis=-1表示倒数第一个维度
    # torch.stack()将(cx, cy, w, h)的维度n将其沿着倒数第一个维度拼接在一起,又是(n,4)
    boxes = torch.stack((cx, cy, w, h), axis=-1)
    return boxes

#@save
def box_center_to_corner(boxes):
    """从(中间,宽度,高度)转换到(左上,右下)"""
    cx, cy, w, h = boxes[:, 0], boxes[:, 1], boxes[:, 2], boxes[:, 3]
    x1 = cx - 0.5 * w
    y1 = cy - 0.5 * h
    x2 = cx + 0.5 * w
    y2 = cy + 0.5 * h
    boxes = torch.stack((x1, y1, x2, y2), axis=-1)
    return boxes

13.4 锚框

目标检测算法通常会在图像中采集大量的样本,本小节介绍其中一个采样办法:以某个像素为中心,生成多个不同缩放比和宽高比的边界框。

13.4.1 生成多个锚框

%matplotlib inline
import torch
from d2l import torch as d2l

torch.set_printoptions(2)  # 精简输出精度,显示小数点后2位
"""
形成多个锚框
params:
    data:图像(批量大小,通道数,高,宽)
    sizes:缩放比尺寸集合
    ratios:宽高比集合
    
"""
def multibox_prior(data, sizes, ratios):
    # 获取data后两位的值,也就是图像的高和宽
    in_height, in_width = data.shape[-2:]
    """ 
    params:
        device:cpu或者gpu
        num_sizes:尺寸的个数n
        num_ratios:宽高比个数m
    """
    device, num_sizes, num_ratios = data.device, len(sizes), len(ratios)
    # 以同一像素为中心的锚框数量n+m-1
    boxes_per_pixel = (num_sizes + num_ratios - 1)
    size_tensor = torch.tensor(sizes, device=device)
    ratio_tensor = torch.tensor(ratios, device=device)

    # offset:为了将锚点移动到像素的中心,需要设置偏移量。
    # steps:归一化,将宽高规化到0-1之间,因为一个像素的高为1且宽为1,我们选择偏移我们的中心0.5
    offset_h, offset_w = 0.5, 0.5
    steps_h = 1.0 / in_height  # 在y轴上缩放步长
    steps_w = 1.0 / in_width  # 在x轴上缩放步长
    
    # 假设宽高512*216 那么torch.arange(in_height, device=device)=【0,1,2...511】,移动到中心就是[0.5,1.5...511.5]
    # 第一步:torch.arange(in_height, device=device) + offset_h代表移动到每个像素的中心,因为每个像素1*1大小.
    # 第二步:宽高进行归一化
    center_h = (torch.arange(in_height, device=device) + offset_h) * steps_h
    center_w = (torch.arange(in_width, device=device) + offset_w) * steps_w
    """
    a = torch.tensor([1, 2, 3, 4])
    b = torch.tensor([4, 5, 6])

    x, y = torch.meshgrid(a, b,indexing='ij')
    print:tensor([[1, 1, 1],
        [2, 2, 2],
        [3, 3, 3],
        [4, 4, 4]])
    tensor([[4, 5, 6],
        [4, 5, 6],
        [4, 5, 6],
        [4, 5, 6]])
    x, y = torch.meshgrid(a, b,indexing='xy')
    print:tensor([[1, 2, 3, 4],
        [1, 2, 3, 4],
        [1, 2, 3, 4]])
    tensor([[4, 4, 4, 4],
        [5, 5, 5, 5],
        [6, 6, 6, 6]])
    """
    # 对比上面例子,假设center_h=tensor([0.5,1.5...511.5])(实际上是0-1的值,这里为了简单理解写成这样)  
    # 则shift_y=tensor([0.5,0.5..],[1.5,1.5,...],...[511.5,511.5...])
    shift_y, shift_x = torch.meshgrid(center_h, center_w, indexing='ij')   
    # 将shift展平成一维序列,用上述的例子则shift_y为tensor([0.5,0.5...511.5,511.5])
    shift_y, shift_x = shift_y.reshape(-1), shift_x.reshape(-1)
    # 宽=h*s*sqrt(r)
    # 由于锚框只考虑s1和r1的组合,r1组合就是size_tensor * torch.sqrt(ratio_tensor[0]),s1组合就是sizes[0] * torch.sqrt(ratio_tensor[1:])
    # 此处要乘上in_height / in_width是因为,假设此时ratios宽高比为1,那么默认w=h,但是实际上ratios代表与原图宽高比一致,举个例子
    # 假设原图1000*10,那么当ratios为1时,此时w=h,而我们需要的是w/h = 1000/10,所以需要乘上in_height / in_width来与原尺寸保持一致
    w = torch.cat((size_tensor * torch.sqrt(ratio_tensor[0]),
                   sizes[0] * torch.sqrt(ratio_tensor[1:])))\
                   * in_height / in_width  # 处理矩形输入
    h = torch.cat((size_tensor / torch.sqrt(ratio_tensor[0]),
                   sizes[0] / torch.sqrt(ratio_tensor[1:])))
    # 除以2来获得半高和半宽
    # 每一行(-w, -h, w, h)对应一个锚框一个锚框的左上角偏差和右下角偏差
    anchor_manipulations = torch.stack((-w, -h, w, h)).T.repeat(
                                        in_height * in_width, 1) / 2
    
    # 每个中心点都将有boxes_per_pixel=(n+m-1)个锚框,
    # 形状:(w*h*(n+m-1), 4)
    out_grid = torch.stack([shift_x, shift_y, shift_x, shift_y],
                dim=1).repeat_interleave(boxes_per_pixel, dim=0)
    output = out_grid + anchor_manipulations
    # 添加一个维度
    return output.unsqueeze(0)
    
img = d2l.plt.imread('../data/img/catdog.jpg')
h, w = img.shape[:2] # (1080, 1920)
X = torch.rand(size=(1, 3, h, w))
Y = multibox_prior(X, sizes=[0.75, 0.5, 0.25], ratios=[1, 2, 0.5])
print(Y.shape)
# 即将Y变成(高,宽,以同一像素点为中心的锚框数,4)
# 每个锚框有四个元素(锚框的左上角x,y坐标和锚框右下角的x,y坐标)
# n+m-1=3+3-1=5
boxes = Y.reshape(h, w, 5, 4)
# 访问以(250,250)为中心的第一个锚框
boxes[250, 250, 0, :]
# 显示以某个像素点为中心的所有锚框
"""
params:
    axes:图像坐标
    bboxes:某个像素点中心坐标
    labels:显示文本,例如s=0.2,r=1
    colors:锚框的颜色
"""
def show_bboxes(axes, bboxes, labels=None, colors=None):
    """显示所有边界框"""
    def _make_list(obj, default_values=None):
        if obj is None:
            obj = default_values
        elif not isinstance(obj, (list, tuple)):
            obj = [obj]
        return obj

    labels = _make_list(labels)
    colors = _make_list(colors, ['b', 'g', 'r', 'm', 'c'])
    for i, bbox in enumerate(bboxes):
        color = colors[i % len(colors)]
        # bbox_to_rect将边界框(左上x,左上y,右下x,右下y)格式转换成matplotlib格式:
        # ((左上x,左上y),宽,高)
        rect = d2l.bbox_to_rect(bbox.detach().numpy(), color)
        axes.add_patch(rect)
        if labels and len(labels) > i:
            text_color = 'k' if color == 'w' else 'w'
            axes.text(rect.xy[0], rect.xy[1], labels[i],
                      va='center', ha='center', fontsize=9, color=text_color,
                      bbox=dict(facecolor=color, lw=0))
d2l.set_figsize()
bbox_scale = torch.tensor((w, h, w, h))
fig = d2l.plt.imshow(img)
show_bboxes(fig.axes, boxes[750, 750, :, :] * bbox_scale,
            ['s=0.75, r=1', 's=0.5, r=1', 's=0.25, r=1', 's=0.75, r=2',
             's=0.75, r=0.5'])

13.4.2 交并比

# 衡量锚框与真实框之间或者锚框与锚框之间的相似度,即A∩B/A∪B
def box_iou(boxes1, boxes2):
    """计算两个锚框或边界框列表中成对的交并比"""
    box_area = lambda boxes: ((boxes[:, 2] - boxes[:, 0]) *
                              (boxes[:, 3] - boxes[:, 1]))
     # boxes1,boxes2,areas1,areas2的形状:
    # boxes1:(boxes1的数量,4),
    # boxes2:(boxes2的数量,4),
    # areas1:(boxes1的数量,),
    # areas2:(boxes2的数量,)
    areas1 = box_area(boxes1)
    areas2 = box_area(boxes2)
    # inter_upperlefts,inter_lowerrights,inters的形状:
    # (boxes1的数量,boxes2的数量,2)
    inter_upperlefts = torch.max(boxes1[:, None, :2], boxes2[:, :2])
    inter_lowerrights = torch.min(boxes1[:, None, 2:], boxes2[:, 2:])
    inters = (inter_lowerrights - inter_upperlefts).clamp(min=0)
    # inter_areasandunion_areas的形状:(boxes1的数量,boxes2的数量)
    inter_areas = inters[:, :, 0] * inters[:, :, 1]
    union_areas = areas1[:, None] + areas2 - inter_areas
    return inter_areas / union_areas

13.4.3 在训练数据中标注锚框

%matplotlib inline
import torch
from d2l import torch as d2l

torch.set_printoptions(2)  # 精简输出精度,显示小数点后2位
"""
形成多个锚框
params:
    data:图像(批量大小,通道数,高,宽)
    sizes:缩放比尺寸集合
    ratios:宽高比集合
    
"""
def multibox_prior(data, sizes, ratios):
    # 获取data后两位的值,也就是图像的高和宽
    in_height, in_width = data.shape[-2:]
    """ 
    params:
        device:cpu或者gpu
        num_sizes:尺寸的个数n
        num_ratios:宽高比个数m
    """
    device, num_sizes, num_ratios = data.device, len(sizes), len(ratios)
    # 以同一像素为中心的锚框数量n+m-1
    boxes_per_pixel = (num_sizes + num_ratios - 1)
    size_tensor = torch.tensor(sizes, device=device)
    ratio_tensor = torch.tensor(ratios, device=device)

    # offset:为了将锚点移动到像素的中心,需要设置偏移量。
    # steps:归一化,将宽高规化到0-1之间,因为一个像素的高为1且宽为1,我们选择偏移我们的中心0.5
    offset_h, offset_w = 0.5, 0.5
    steps_h = 1.0 / in_height  # 在y轴上缩放步长
    steps_w = 1.0 / in_width  # 在x轴上缩放步长
    
    # 假设宽高512*216 那么torch.arange(in_height, device=device)=【0,1,2...511】,移动到中心就是[0.5,1.5...511.5]
    # 第一步:torch.arange(in_height, device=device) + offset_h代表移动到每个像素的中心,因为每个像素1*1大小.
    # 第二步:宽高进行归一化
    center_h = (torch.arange(in_height, device=device) + offset_h) * steps_h
    center_w = (torch.arange(in_width, device=device) + offset_w) * steps_w
    """
    a = torch.tensor([1, 2, 3, 4])
    b = torch.tensor([4, 5, 6])

    x, y = torch.meshgrid(a, b,indexing='ij')
    print:tensor([[1, 1, 1],
        [2, 2, 2],
        [3, 3, 3],
        [4, 4, 4]])
    tensor([[4, 5, 6],
        [4, 5, 6],
        [4, 5, 6],
        [4, 5, 6]])
    x, y = torch.meshgrid(a, b,indexing='xy')
    print:tensor([[1, 2, 3, 4],
        [1, 2, 3, 4],
        [1, 2, 3, 4]])
    tensor([[4, 4, 4, 4],
        [5, 5, 5, 5],
        [6, 6, 6, 6]])
    """
    # 对比上面例子,假设center_h=tensor([0.5,1.5...511.5])(实际上是0-1的值,这里为了简单理解写成这样)  
    # 则shift_y=tensor([0.5,0.5..],[1.5,1.5,...],...[511.5,511.5...])
    shift_y, shift_x = torch.meshgrid(center_h, center_w, indexing='ij')   
    # 将shift展平成一维序列,用上述的例子则shift_y为tensor([0.5,0.5...511.5,511.5])
    shift_y, shift_x = shift_y.reshape(-1), shift_x.reshape(-1)
    # 宽=h*s*sqrt(r)
    # 由于锚框只考虑s1和r1的组合,r1组合就是size_tensor * torch.sqrt(ratio_tensor[0]),s1组合就是sizes[0] * torch.sqrt(ratio_tensor[1:])
    # 此处要乘上in_height / in_width是因为,假设此时ratios宽高比为1,那么默认w=h,但是实际上ratios代表与原图宽高比一致,举个例子
    # 假设原图1000*10,那么当ratios为1时,此时w=h,而我们需要的是w/h = 1000/10,所以需要乘上in_height / in_width来与原尺寸保持一致
    w = torch.cat((size_tensor * torch.sqrt(ratio_tensor[0]),
                   sizes[0] * torch.sqrt(ratio_tensor[1:])))\
                   * in_height / in_width  # 处理矩形输入
    h = torch.cat((size_tensor / torch.sqrt(ratio_tensor[0]),
                   sizes[0] / torch.sqrt(ratio_tensor[1:])))
    # 除以2来获得半高和半宽
    # 每一行(-w, -h, w, h)对应一个锚框一个锚框的左上角偏差和右下角偏差
    anchor_manipulations = torch.stack((-w, -h, w, h)).T.repeat(
                                        in_height * in_width, 1) / 2
    
    # 每个中心点都将有boxes_per_pixel=(n+m-1)个锚框,
    # 形状:(w*h*(n+m-1), 4)
    out_grid = torch.stack([shift_x, shift_y, shift_x, shift_y],
                dim=1).repeat_interleave(boxes_per_pixel, dim=0)
    output = out_grid + anchor_manipulations
    # 添加一个维度
    return output.unsqueeze(0)
    
img = d2l.plt.imread('../data/img/catdog.jpg')
h, w = img.shape[:2] # (1080, 1920)
X = torch.rand(size=(1, 3, h, w))
Y = multibox_prior(X, sizes=[0.75, 0.5, 0.25], ratios=[1, 2, 0.5])
print(Y.shape)
# 即将Y变成(高,宽,以同一像素点为中心的锚框数,4)
# 每个锚框有四个元素(锚框的左上角x,y坐标和锚框右下角的x,y坐标)
# n+m-1=3+3-1=5
boxes = Y.reshape(h, w, 5, 4)
# 访问以(250,250)为中心的第一个锚框
boxes[250, 250, 0, :]
# 显示以某个像素点为中心的所有锚框
"""
params:
    axes:图像坐标
    bboxes:某个像素点中心坐标
    labels:显示文本,例如s=0.2,r=1
    colors:锚框的颜色
"""
def show_bboxes(axes, bboxes, labels=None, colors=None):
    """显示所有边界框"""
    def _make_list(obj, default_values=None):
        if obj is None:
            obj = default_values
        elif not isinstance(obj, (list, tuple)):
            obj = [obj]
        return obj

    labels = _make_list(labels)
    colors = _make_list(colors, ['b', 'g', 'r', 'm', 'c'])
    for i, bbox in enumerate(bboxes):
        color = colors[i % len(colors)]
        # bbox_to_rect将边界框(左上x,左上y,右下x,右下y)格式转换成matplotlib格式:
        # ((左上x,左上y),宽,高)
        rect = d2l.bbox_to_rect(bbox.detach().numpy(), color)
        axes.add_patch(rect)
        if labels and len(labels) > i:
            text_color = 'k' if color == 'w' else 'w'
            axes.text(rect.xy[0], rect.xy[1], labels[i],
                      va='center', ha='center', fontsize=9, color=text_color,
                      bbox=dict(facecolor=color, lw=0))
d2l.set_figsize()
bbox_scale = torch.tensor((w, h, w, h))
fig = d2l.plt.imshow(img)
show_bboxes(fig.axes, boxes[750, 750, :, :] * bbox_scale,
            ['s=0.75, r=1', 's=0.5, r=1', 's=0.25, r=1', 's=0.75, r=2',
             's=0.75, r=0.5'])
# 衡量锚框与真实框之间或者锚框与锚框之间的相似度,即A∩B/A∪B
def box_iou(boxes1, boxes2):
    """计算两个锚框或边界框列表中成对的交并比"""
    box_area = lambda boxes: ((boxes[:, 2] - boxes[:, 0]) *
                              (boxes[:, 3] - boxes[:, 1]))
     # boxes1,boxes2,areas1,areas2的形状:
    # boxes1:(boxes1的数量,4),
    # boxes2:(boxes2的数量,4),
    # areas1:(boxes1的数量,),
    # areas2:(boxes2的数量,)
    areas1 = box_area(boxes1)
    areas2 = box_area(boxes2)
    # inter_upperlefts,inter_lowerrights,inters的形状:
    # (boxes1的数量,boxes2的数量,2)
    inter_upperlefts = torch.max(boxes1[:, None, :2], boxes2[:, :2])
    inter_lowerrights = torch.min(boxes1[:, None, 2:], boxes2[:, 2:])
    inters = (inter_lowerrights - inter_upperlefts).clamp(min=0)
    # inter_areasandunion_areas的形状:(boxes1的数量,boxes2的数量)
    inter_areas = inters[:, :, 0] * inters[:, :, 1]
    union_areas = areas1[:, None] + areas2 - inter_areas
    return inter_areas / union_areas
# 将最接近的真实边界框分配给锚框
# iou_threshold:阈值
def assign_anchor_to_bbox(ground_truth, anchors, device, iou_threshold=0.5):
    # num_anchors=na num_gt_boxes=nb
    num_anchors, num_gt_boxes = anchors.shape[0], ground_truth.shape[0]
    # 位于第i行和第j列的元素x_ij是锚框i和真实边界框j的IoU
    jaccard = box_iou(anchors, ground_truth)
    # 对于每个锚框,分配的真实边界框的张量,初始值为-1
    anchors_bbox_map = torch.full((num_anchors,), -1, dtype=torch.long,
                                  device=device)
    # 找到每一行中最大交并比的ground_truth和anchors索引号
    max_ious, indices = torch.max(jaccard, dim=1)
    # 找到剩余交并比大于阈值的索引号
    anc_i = torch.nonzero(max_ious >= iou_threshold).reshape(-1)
    box_j = indices[max_ious >= iou_threshold]
    
    anchors_bbox_map[anc_i] = box_j
    # 删去这些索引行和列
    col_discard = torch.full((num_anchors,), -1)
    row_discard = torch.full((num_gt_boxes,), -1)
    for _ in range(num_gt_boxes):
        max_idx = torch.argmax(jaccard)
        box_idx = (max_idx % num_gt_boxes).long()
        anc_idx = (max_idx / num_gt_boxes).long()
        anchors_bbox_map[anc_idx] = box_idx
        jaccard[:, box_idx] = col_discard
        jaccard[anc_idx, :] = row_discard
    return anchors_bbox_map
#@save
def offset_boxes(anchors, assigned_bb, eps=1e-6):
    """对锚框偏移量的转换"""
    c_anc = d2l.box_corner_to_center(anchors)
    c_assigned_bb = d2l.box_corner_to_center(assigned_bb)
    offset_xy = 10 * (c_assigned_bb[:, :2] - c_anc[:, :2]) / c_anc[:, 2:]
    offset_wh = 5 * torch.log(eps + c_assigned_bb[:, 2:] / c_anc[:, 2:])
    offset = torch.cat([offset_xy, offset_wh], axis=1)
    return offset
#@save
def multibox_target(anchors, labels):
    """使用真实边界框标记锚框"""
    batch_size, anchors = labels.shape[0], anchors.squeeze(0)
    batch_offset, batch_mask, batch_class_labels = [], [], []
    device, num_anchors = anchors.device, anchors.shape[0]
    for i in range(batch_size):
        label = labels[i, :, :]
        anchors_bbox_map = assign_anchor_to_bbox(
            label[:, 1:], anchors, device)
        bbox_mask = ((anchors_bbox_map >= 0).float().unsqueeze(-1)).repeat(
            1, 4)
        # 将类标签和分配的边界框坐标初始化为零
        class_labels = torch.zeros(num_anchors, dtype=torch.long,
                                   device=device)
        assigned_bb = torch.zeros((num_anchors, 4), dtype=torch.float32,
                                  device=device)
        # 使用真实边界框来标记锚框的类别。
        # 如果一个锚框没有被分配,标记其为背景(值为零)
        indices_true = torch.nonzero(anchors_bbox_map >= 0)
        bb_idx = anchors_bbox_map[indices_true]
        class_labels[indices_true] = label[bb_idx, 0].long() + 1
        assigned_bb[indices_true] = label[bb_idx, 1:]
        # 偏移量转换
        offset = offset_boxes(anchors, assigned_bb) * bbox_mask
        batch_offset.append(offset.reshape(-1))
        batch_mask.append(bbox_mask.reshape(-1))
        batch_class_labels.append(class_labels)
    bbox_offset = torch.stack(batch_offset)
    bbox_mask = torch.stack(batch_mask)
    class_labels = torch.stack(batch_class_labels)
    return (bbox_offset, bbox_mask, class_labels)

ground_truth = torch.tensor([[0, 0.1, 0.08, 0.52, 0.92],
                         [1, 0.55, 0.2, 0.9, 0.88]])
anchors = torch.tensor([[0, 0.1, 0.2, 0.3], [0.15, 0.2, 0.4, 0.4],
                    [0.63, 0.05, 0.88, 0.98], [0.66, 0.45, 0.8, 0.8],
                    [0.57, 0.3, 0.92, 0.9]])

13.5 多尺度目标检测

首先锚框是在图像的每个像素点设立n+m-1个锚框,如果图像尺寸很大的话,会造成数据爆炸。这个小节介绍了在输入图像中均匀采样一小部分像素点。

用卷积层的输出即特征图来设立锚框,设立特征图的每个像素点为锚框中心,对任意图像的特征图(w,h)中的像素进行采样,以这些均匀采样的像素为中心。

def display_anchors(fmap_w, fmap_h, s):
    d2l.set_figsize()
    # 前两个维度上的值不影响输出
    fmap = torch.zeros((10, 100, fmap_h, fmap_w))
    anchors = d2l.multibox_prior(fmap, sizes=s, ratios=[1, 2, 0.5])
    bbox_scale = torch.tensor((w, h, w, h))
    d2l.show_bboxes(d2l.plt.imshow(img).axes,
                    anchors[0] * bbox_scale)

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
CSWin Transformer是一种基于Transformer架构的计算机视觉模型,旨在处理图像分类、目标检测和语义分割等任务。它是由CSDN开发的一种模型,并不与OpenAI公司开发的ChatGPT有关。以下是对CSWin Transformer代码的详细解释: CSWin Transformer的代码实现主要包括以下几个关键部分: 1. 输入处理(Input Processing):在输入处理部分,图像被分成多个块(patches),每个块被拉平成向量。然后,这些向量作为输入被传递给Transformer模型。 2. 位置编码(Positional Encoding):为了引入图像中像素的位置信息,位置编码被添加到输入向量上。常用的位置编码方法包括正弦/余弦编码、可学习的位置编码等。 3. 块嵌入(Patch Embedding):通过一个线性投影层,将输入向量映射成具有更高维度的特征表示。这样做的目的是为了提供更多的表达能力,以便模型能够更好地理解图像内容。 4. Transformer编码器(Transformer Encoder):CSWin Transformer使用多层Transformer编码器来捕捉图像中的全局和局部信息。每个Transformer层包括多头自注意力机制(Multi-Head Self-Attention)和前馈神经网络(Feed-Forward Neural Network)。自注意力机制允许模型同时关注图像中的不同位置,以捕捉全局上下文信息。 5. 分类/检测/分割头(Classification/Detection/Segmentation Heads):根据具体任务的不同,CSWin Transformer可以有不同的头部。例如,对于图像分类任务,可以使用全局平均池化层和一个线性分类器层。对于目标检测任务,可以添加额外的回归和分类头部。 6. 后处理(Post-Processing):在模型输出之后,通常需要进行后处理操作来获得最终的结果。例如,在目标检测任务中,可以使用非极大值抑制(Non-Maximum Suppression)来消除重叠的边界框。 需要注意的是,以上仅是对CSWin Transformer代码实现的一般解释。实际的代码细节和实现方式可能有所不同,具体实现可能会因不同的框架或库而有所差异。如果您对CSWin Transformer的详细代码实现感兴趣,建议查阅相关开源代码或参考CSDN的相关文章。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值