SVD分解

是对奇异矩阵的分解

 先从特征值的分解说起, 对于方阵 A, n*n  ,

                                                                Ax=λx

x是一个n维向量, 则我们说λλ是矩阵A的一个特征值,而x是矩阵A的特征值λλ所对应的特征向量。

求出特征值和特征向量有什么好处呢? 就是我们可以将矩阵A特征分解。如果我们求出了矩阵A的nn个特征值λ1≤λ2≤...≤λnλ1≤λ2≤...≤λn,以及这nn个特征值所对应的特征向量{w1,w2,...wn}{w1,w2,...wn},,如果这nn个特征向量线性无关,那么矩阵A就可以用下式的特征分解表示:

                                                                      A=WΣW−1

 其中W是这nn个特征向量所张成的n×nn×n维矩阵,而Σ为这n个特征值为主对角线的n×n维矩阵。

 一般我们会把W的这n个特征向量标准化,即向量里的每个元素都除以向量的模即长度,此时W的n个特征向量为标准正交基,满足WTW=IWTW=I,即WT=W−1WT=W−1, 也就是说W为酉矩阵即正交矩阵。

这样我们的特征分解表达式可以写成

A=WΣWTA=WΣWT

    注意到要进行特征分解,矩阵A必须为方阵。那么如果A不是方阵,即行和列不相同时,我们还可以对矩阵进行分解吗?答案是可以,此时我们的SVD登场了。

SVD也是对矩阵进行分解,但是和特征分解不同,SVD并不要求要分解的矩阵为方阵。假设我们的矩阵A是一个m×n的矩阵,那么我们定义矩阵A的SVD为:

A=UΣVT

 其中U是一个m×m的矩阵,Σ是一个m×n的矩阵,除了主对角线上的元素以外全为0,主对角线上的每个元素都称为奇异值,V是一个n×n的矩阵。U和V都是酉矩阵,即满足UTU=I,VTV=IUTU=I,VTV=I。下图可以很形象的看出上面SVD的定义:

那么我们如何求出SVD分解后的U,Σ,VU这三个矩阵呢?

    如果我们将A的转置和A做矩阵乘法,那么会得到n×n的一个方阵ATA。既然ATA是方阵,那么我们就可以进行特征分解,得到的特征值和特征向量满足下式:

                                                           (ATA)vi=λivi

如果我们将A和A的转置做矩阵乘法,那么会得到m×m的一个方阵AAT。既然AATAAT是方阵,那么我们就可以进行特征分解,得到的特征值和特征向量满足下式:

                                                          (AAT)ui=λiui

这样我们就可以得到矩阵AAT的m个特征值和对应的m个特征向量uu了。将AAT的所有特征向量张成一个m×m的矩阵U,就是我们SVD公式里面的U矩阵了。一般我们将U中的每个特征向量叫做A的左奇异向量。

  U和V我们都求出来了,现在就剩下奇异值矩阵Σ没有求出了。由于Σ除了对角线上是奇异值其他位置都是0,那我们只需要求出每个奇异值σ就可以了。

    我们注意到:

A=UΣVT⇒AV=UΣVTV⇒AV=UΣ⇒Avi=σiui⇒σi=Avi/ui

A=UΣVT⇒AT=VΣTUT⇒ATA=VΣTUTUΣVT=VΣ2VT

奇异值就是ATA或者AAT的特征值的平方根

进一步我们还可以看出我们的特征值矩阵等于奇异值矩阵的平方,也就是说特征值和奇异值满足如

举例求解:

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值