AAL模板及脑区功能介绍

AAL,即Anatomical Automatic Labeling,由MNI机构提供,包含116个分区,其中90个属于大脑,26个属于小脑。该模板广泛用于神经科学研究,各脑区的具体功能可在相关链接中详细查阅。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

AAL全称是Anatomical Automatic Labeling,AAL分区是由 Montreal Neurological Institute (MNI)机构提供的。AAL模板一共有116个区域,但只有90个属于大脑,剩余26个属于小脑结构,研究的较少。

116个分区名称见AAL模板 - 百度文库 具体如下表:

中文名称 Mricro编号 Mricro命名 Mricro不明信息
中央前回

1

Precentral_L

2001

中央前回

2

Precentral_R

2002

背外侧额上回

3

Frontal_Sup_L

2101

背外侧额上回

4

Frontal_Sup_R

2102

眶部额上回

5

Frontal_Sup_Orb_L

2111

眶部额上回

6

Frontal_Sup_Orb_R

2112

额中回

7

Frontal_Mid_L

2201

额中回

8

Frontal_Mid_R

2202

眶部额中回

9

Frontal_Mid_Orb_L

2211

眶部额中回

10

Frontal_Mid_Orb_R

2212

岛盖部额下回

11

Frontal_Inf_Oper_L

2301

岛盖部额下回

12

Frontal_Inf_Oper_R

2302

三角部额下回

13

Frontal_Inf_Tri_L

2311

三角部额下回

14

Frontal_Inf_Tri_R

2312

眶部额下回

15

Frontal_Inf_Orb_L

2321

眶部额下回

16

Frontal_Inf_Orb_R

2322

中央沟盖

17

Rolandic_Oper_L

2331

中央沟盖(Rolandic operculum)

18

Rolandic_Oper_R

2332

补充运动区

19

Supp_Motor_Area_L

2401

补充运动区

20

Supp_Motor_Area_R

2402

嗅皮质

21

Olfactory_L

2501

嗅皮质

22

</
### 使用 FreeSurfer 处理 T1 加权图像并基于 AAL 模板提取特定区域灰质体积的方法 #### 准备工作 为了实现这一目标,首先需要确保已经成功安装并配置好了 FreeSurfer 和其他必要的工具包。完成 T1 加权图像的预处理后,可以利用 `mri_convert` 或者 `tkregister2` 将原始空间下的数据转换到标准 MNI 空间。 #### 转换至标准化空间 由于 AAL 模板位于 MNI 标准空间内,因此需先将个体化的解剖结构映射至此空间。这一步骤可通过执行如下命令来达成: ```bash mri_vol2vol --mov aseg.mgz --targ $FREESURFER_HOME/average/mni305.cor.mgz \ --regheader --o aseg_mni305.nii.gz --no-resample ``` 此操作会生成一个名为 `aseg_mni305.nii.gz` 的文件,在其中包含了按照 MNI 坐标系排列好的分割信息[^1]。 #### 获取感兴趣区 (ROI) 掩码 接下来要获取所关心脑区对应的二值掩码。假设已知所需 ROI 名字,则可以通过查询 AAL 文档找到对应编号,并据此制作掩码。例如,对于 rACC 这样的区域,可以在 MATLAB 中编写脚本来读取 AAL nii 文件并导出指定 ID 对应的部分为新的 NIfTI 文件。 MATLAB 示例代码: ```matlab % Load the AAL template and define target region IDs aalTemplate = load_untouchable('AAL_template_path'); % Replace with actual path to your AAL file targetRegionIDs = [9, 10]; % Example IDs for bilateral ACC regions; adjust as needed based on documentation % Create binary mask of selected ROIs roiMask = ismember(aalTemplate.img, targetRegionIDs); % Save new NIfTI image containing only these ROIs save_nifti(roiMask, aalTemplate.hdr, 'selected_rois_mask.nii'); ``` 上述过程中涉及到了加载 AAL 模板以及保存新创建的掩码文件的操作;具体函数名可能因使用的库不同而有所变化,请参照实际环境调整相应部分[^2]。 #### 计算灰质体积 最后一步就是计算这些区域内所有体素的数量乘以其各自的体积(通常是 mm³),从而得出总体积数值。考虑到之前得到的是布尔类型的数组形式表示的掩码,可以直接应用逻辑运算符筛选符合条件的位置再求和即可获得最终结果。 Python 实现示例: ```python import nibabel as nib import numpy as np # Load processed segmentation data from previous step seg_data = nib.load('aseg_mni305.nii.gz').get_fdata() # Load previously created ROI mask mask_data = nib.load('selected_rois_mask.nii').get_fdata().astype(bool) # Calculate volume by counting voxels within masked area multiplied by voxel size voxel_volume_mm3 = abs(np.prod(nib.load('aseg_mni305.nii.gz').header.get_zooms())) gray_matter_volume_mm3 = np.sum(seg_data[mask_data]) * voxel_volume_mm3 print(f"Gray matter volume in specified ROIs: {gray_matter_volume_mm3:.2f} cubic millimeters") ``` 这段 Python 代码展示了如何读入先前准备好的分割数据与 ROI 掩码,并通过简单的数学运算得到了选定区域内灰质的具体量度。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值