[vijos P1037]搭建双塔

描述

2001年9月11日,一场突发的灾难将纽约世界贸易中心大厦夷为平地,Mr. F曾亲眼目睹了这次灾难。为了纪念“9?11”事件,Mr. F决定自己用水晶来搭建一座双塔。
Mr. F有N块水晶,每块水晶有一个高度,他想用这N块水晶搭建两座有同样高度的塔,使他们成为一座双塔,Mr. F可以从这N块水晶中任取M(1≤M≤N)块来搭建。但是他不知道能否使两座塔有同样的高度,也不知道如果能搭建成一座双塔,这座双塔的最大高度是多少。所以他来请你帮忙。
给定水晶的数量N(1≤N≤100)和每块水晶的高度Hi(N块水晶高度的总和不超过2000),你的任务是判断Mr. F能否用这些水晶搭建成一座双塔(两座塔有同样的高度),如果能,则输出所能搭建的双塔的最大高度,否则输出“Impossible”。

输入格式
输入的第一行为一个数N,表示水晶的数量。第二行为N个数,第i个数表示第i个水晶的高度。

输出格式
输出仅包含一行,如果能搭成一座双塔,则输出双塔的最大高度,否则输出一个字符串“Impossible”。

样例输入

5
1 3 4 5 2

样例输出

7

题解:
存在性动态规划, f [ i ] [ j ] f[i][j] f[i][j] 表示能否建造出左边的塔高度为 i i i,右边的塔高度为 j j j的情况。我们可以很正常的推出 f [ 0 ] [ 0 ] = 1 f[0][0] = 1 f[0][0]=1(因为搭建高度为 0 0 0的塔是肯定成立的嘛),那么接下来的方法就很简单了。(跟背包问题一样逆推,不过要注意细节。)

代码:

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#define LiangJiaJun main
using namespace std;
bool f[4004][4004];
int a[104],n;

int LiangJiaJun (){
	scanf("%d",&n);
	for(int i=1;i<=n;i++) scanf("%d",&a[i]);
	memset(f,0,sizeof(f));
	f[0][0] = 1;
	for(int Cp = 1; Cp <= n ; Cp ++){
		for(int i=2000;i>=0;i--){
			for(int j=2000;j>=0;j--){
				if(f[i][j]) f[i][j+a[Cp]] = f[i+a[Cp]][j] = 1;
			}
		}
	}
	for(int i=2000;i>=1;i--)if(f[i][i])return printf("%d\n",i),0;
	puts("Impossible");
	return 0;
}

更新2018.12.9:
之前那个 O ( n ∗ 2000 ∗ 2000 ) O(n*2000*2000) O(n20002000)的算法太硬核了
更新一个 O ( n ∗ 2000 ) O(n*2000) O(n2000)的算法
f [ i ] [ j ] f[i][j] f[i][j]表示前 i i i个水晶搭成的,高度差为 j j j的双塔中,高度更高的塔的高度
f [ i ] [ j ] = m a x ( f [ i ] [ j ] , f [ i − 1 ] [ j ] ) f[i][j]=max(f[i][j],f[i-1][j]) f[i][j]=max(f[i][j],f[i1][j])表示第i个水晶不放
f [ i ] [ j ] = m a x ( f [ i ] [ j ] , f [ i − 1 ] [ j + a [ i ] ] ) f[i][j]=max(f[i][j],f[i-1][j+a[i]]) f[i][j]=max(f[i][j],f[i1][j+a[i]])表示第i个水晶放在高度低的塔上,而且放完之后低的塔高度没有超过高的塔
f [ i ] [ j ] = m a x ( f [ i ] [ j ] , f [ i − 1 ] [ j − a [ i ] ] + a [ i ] ) f[i][j]=max(f[i][j],f[i-1][j-a[i]]+a[i]) f[i][j]=max(f[i][j],f[i1][ja[i]]+a[i])表示i个水晶放在高度高的塔上
f [ i ] [ j ] = m a x ( f [ i ] [ j ] , f [ i − 1 ] [ a [ i ] − j ] + j ) f[i][j]=max(f[i][j],f[i-1][a[i]-j]+j) f[i][j]=max(f[i][j],f[i1][a[i]j]+j)表示第i个水晶放在高度低的塔上,并且放完之后低的塔高度超过了高度高的塔
注意边界

#include<bits/stdc++.h>
#define LiangJiaJun main
#define INF 1999122700
using namespace std;
int n;
int f[104][2004],a[104];
int w33ha(){
    memset(f,0,sizeof(f));
    for(int i=1;i<=n;i++)scanf("%d",&a[i]);
    for(int i=0;i<=101;i++)
        for(int j=0;j<=2001;j++)
            f[i][j]=-INF;
    f[0][0]=0;
    for(int i=1;i<=n;i++){
        for(int j=2000;j>=0;j--){
            f[i][j]=max(f[i][j],f[i-1][j]);
            if(j+a[i]<=2000)f[i][j]=max(f[i][j],f[i-1][j+a[i]]);
            if(j>=a[i])f[i][j]=max(f[i][j],f[i-1][j-a[i]]+a[i]);
            if(j<=a[i])f[i][j]=max(f[i][j],f[i-1][a[i]-j]+j);
        }
    }
    if(f[n][0]>0)printf("%d\n",f[n][0]);
    else puts("Impossible");
    return 0;
}
int LiangJiaJun(){
    while(scanf("%d",&n)!=EOF)w33ha();
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值