[BZOJ2460][BeiJing2011]元素

Time Limit: 20 Sec
Memory Limit: 128 MB

Description

相传,在远古时期,位于西方大陆的 Magic Land 上,人们已经掌握了用魔法矿石炼制法杖的技术。那时人们就认识到,一个法杖的法力取决于使用的矿石。一般地,矿石越多则法力越强,但物极必反:有时,人们为了获取更强的法力而使用了很多矿石,却在炼制过程中发现魔法矿石全部消失了,从而无法炼制出法杖,这个现象被称为“魔法抵消” 。特别地,如果在炼制过程中使用超过
一块同一种矿石,那么一定会发生“魔法抵消”。
后来,随着人们认知水平的提高,这个现象得到了很好的解释。经过了大量的实验后,著名法师 Dmitri 发现:如果给现在发现的每一种矿石进行合理的编号(编号为正整数,称为该矿石的元素序号),那么,一个矿石组合会产生“魔法抵消”当且仅当存在一个非空子集,那些矿石的元素序号按位异或起来为零。 (如果你不清楚什么是异或,请参见下一页的名词解释。 )例如,使用两个同样的矿石必将发生“魔法抵消”,因为这两种矿石的元素序号相同,异或起来为零。
并且人们有了测定魔力的有效途径,已经知道了:合成出来的法杖的魔力等于每一种矿石的法力之和。人们已经测定了现今发现的所有矿石的法力值,并且通过实验推算出每一种矿石的元素序号。
现在,给定你以上的矿石信息,请你来计算一下当时可以炼制出的法杖最多有多大的魔力。

Input

第一行包含一个正整数 N N N,表示矿石的种类数。
接下来 N行,每行两个正整数 N u m b e r i Number_i Numberi M a g i c i Magic_i Magici,表示这种矿石的元素序号
和魔力值。

Output

仅包一行,一个整数:最大的魔力值

Sample Input

  3 
  1 10 
  2 20 
  3 30 

Sample Output

50

HINT

由于有“魔法抵消”这一事实,每一种矿石最多使用一块。
如果使用全部三种矿石,由于三者的元素序号异或起来:1 xor 2 xor 3 = 0 ,则会发生魔法抵消,得不到法杖。
可以发现,最佳方案是选择后两种矿石,法力为 20+30=50。
对于全部的数据: N ≤ 1000 , N u m b e r i ≤ 1 0 18 , M a g i c i ≤ 1 0 4 N ≤ 1000,Number_i ≤ 10^{18} ,Magic_i ≤ 10^4 N1000Numberi1018Magici104

题解:
线性基again
将矿石按照 M a g i c i Magic_i Magici从大到小的顺序依此将 N u m b e r i Number_i Numberi插入线性基基底,如果可以插入则这个矿石可以拿

切记long long!

#include<bits/stdc++.h>
#define ll long long
using namespace std;
struct LinearBasis{
    int sz;
    ll bs[74];
    set<int>num;
    LinearBasis(int Sz=63){
        sz=Sz;
        memset(bs,0,sizeof(bs));
        num.clear();
    }
    bool ins(ll x,int sit){
        for(ll i=sz-1,bin=(1LL<<(sz-1));i>=0;i--,bin>>=1){
            if(x&bin){
                if(!bs[i]){
                    bs[i]=x;
                    num.insert(sit);
                    break;
                }
                x^=bs[i];
            }
        }
        return x>0;
    }
};
struct Ds{
    ll a,b;
}g[1004];
inline bool dex(Ds A,Ds B){
    return A.b>B.b;
}
int n;
int w33ha(){
    for(int i=1;i<=n;i++){
        scanf("%lld%lld",&g[i].a,&g[i].b);
    }
    sort(g+1,g+n+1,dex);
    LinearBasis lb=LinearBasis(63);
    ll ans=0;
    for(int i=1;i<=n;i++){
        if(lb.ins(g[i].a,i))ans+=g[i].b;
    }
    printf("%lld\n",ans);
    return 0;
}
int main(){
    while(scanf("%d",&n)!=EOF)w33ha();
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值