Time Limit: 20 Sec
Memory Limit: 128 MB
Description
相传,在远古时期,位于西方大陆的 Magic Land 上,人们已经掌握了用魔法矿石炼制法杖的技术。那时人们就认识到,一个法杖的法力取决于使用的矿石。一般地,矿石越多则法力越强,但物极必反:有时,人们为了获取更强的法力而使用了很多矿石,却在炼制过程中发现魔法矿石全部消失了,从而无法炼制出法杖,这个现象被称为“魔法抵消” 。特别地,如果在炼制过程中使用超过
一块同一种矿石,那么一定会发生“魔法抵消”。
后来,随着人们认知水平的提高,这个现象得到了很好的解释。经过了大量的实验后,著名法师 Dmitri 发现:如果给现在发现的每一种矿石进行合理的编号(编号为正整数,称为该矿石的元素序号),那么,一个矿石组合会产生“魔法抵消”当且仅当存在一个非空子集,那些矿石的元素序号按位异或起来为零。 (如果你不清楚什么是异或,请参见下一页的名词解释。 )例如,使用两个同样的矿石必将发生“魔法抵消”,因为这两种矿石的元素序号相同,异或起来为零。
并且人们有了测定魔力的有效途径,已经知道了:合成出来的法杖的魔力等于每一种矿石的法力之和。人们已经测定了现今发现的所有矿石的法力值,并且通过实验推算出每一种矿石的元素序号。
现在,给定你以上的矿石信息,请你来计算一下当时可以炼制出的法杖最多有多大的魔力。
Input
第一行包含一个正整数
N
N
N,表示矿石的种类数。
接下来 N行,每行两个正整数
N
u
m
b
e
r
i
Number_i
Numberi 和
M
a
g
i
c
i
Magic_i
Magici,表示这种矿石的元素序号
和魔力值。
Output
仅包一行,一个整数:最大的魔力值
Sample Input
3
1 10
2 20
3 30
Sample Output
50
HINT
由于有“魔法抵消”这一事实,每一种矿石最多使用一块。
如果使用全部三种矿石,由于三者的元素序号异或起来:1 xor 2 xor 3 = 0 ,则会发生魔法抵消,得不到法杖。
可以发现,最佳方案是选择后两种矿石,法力为 20+30=50。
对于全部的数据:
N
≤
1000
,
N
u
m
b
e
r
i
≤
1
0
18
,
M
a
g
i
c
i
≤
1
0
4
N ≤ 1000,Number_i ≤ 10^{18} ,Magic_i ≤ 10^4
N≤1000,Numberi≤1018,Magici≤104。
题解:
线性基again
将矿石按照
M
a
g
i
c
i
Magic_i
Magici从大到小的顺序依此将
N
u
m
b
e
r
i
Number_i
Numberi插入线性基基底,如果可以插入则这个矿石可以拿
切记long long!
#include<bits/stdc++.h>
#define ll long long
using namespace std;
struct LinearBasis{
int sz;
ll bs[74];
set<int>num;
LinearBasis(int Sz=63){
sz=Sz;
memset(bs,0,sizeof(bs));
num.clear();
}
bool ins(ll x,int sit){
for(ll i=sz-1,bin=(1LL<<(sz-1));i>=0;i--,bin>>=1){
if(x&bin){
if(!bs[i]){
bs[i]=x;
num.insert(sit);
break;
}
x^=bs[i];
}
}
return x>0;
}
};
struct Ds{
ll a,b;
}g[1004];
inline bool dex(Ds A,Ds B){
return A.b>B.b;
}
int n;
int w33ha(){
for(int i=1;i<=n;i++){
scanf("%lld%lld",&g[i].a,&g[i].b);
}
sort(g+1,g+n+1,dex);
LinearBasis lb=LinearBasis(63);
ll ans=0;
for(int i=1;i<=n;i++){
if(lb.ins(g[i].a,i))ans+=g[i].b;
}
printf("%lld\n",ans);
return 0;
}
int main(){
while(scanf("%d",&n)!=EOF)w33ha();
return 0;
}