Tensorflow object detection API 搭建属于自己的物体识别模型(1)——环境搭建与测试

本文详细介绍了如何在Windows 10环境下搭建Tensorflow Object Detection API,包括安装Python、Tensorflow、CUDA、cuDNN,下载API,配置Protobuf和PYTHONPATH,以及测试API的步骤。通过测试自带案例验证了环境配置的成功。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

 

https://blog.csdn.net/dy_guox/article/details/79111949

后续博客地址(附带视频教程)

--------------------------------------------------------------------------------------------------

 

 

最近对深度学习比较感兴趣,看了网上很多资料,尝试了一下Tensorflow object detection API,想要在自己的数据集上调用API完成识别,积累了不少经验,记录下来,以后给需要的人。

1.开发环境搭建

在自己笔记本上完成。

操作系统:windows 10  64位

内存:8G

GPU:Nvidia MX 150

Tensorflow: 1.4

(1) 安装python

建议选择 Anaconda3-5.0.1 版本,已经集成大多数库,并将其作为默认python版本(3.6.3),配置好环境变量(Anaconda安装则已经配好)

(2)安装Tensorflow

Tensorflow有CPU版本与GPU版本,首先安装CPU版本。采用pip原生安装。“开始-Anaconda3-Anaconda Prompt”调出命令行。

 


                
评论 205
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值