Keras中RNN LSTM循环神经网络中 Return Sequences 与 Return States 的区别

本文详细介绍了Keras中LSTM模型的return_sequences和return_state参数的作用。return_sequences返回每个时间步长的隐藏状态输出,而return_state仅返回最后一个时间步长的隐藏状态和单元状态。理解这两者有助于构建更复杂的RNN模型,如在序列到序列任务中。
摘要由CSDN通过智能技术生成

Keras在GitHub上的一句话简介是“Deep Learning for humans”(给人用的深度学习工具),确实,基于Tensorflow的Keras相对前者来说,能够更加方便快捷地构建神经网络,使非计算机专业的使用者能够将更多精力放在研究问题本身,而不是构建神经网络模型的过程。

在Keras的循环神经网络(RNN)中,有两个参数return_statereturn_sequences

对于一般人来说容易混淆或者不清楚具体的用途用法,在经过一段时间的搜集与测试后,我把我的理解写在这篇博客上。

希望读者读完这篇博客后,可以知道:

  1. return_sequences 返回的是每一个输入时间步长(each input time step)的隐藏状态输出( the hidden state output);
  2. return_state 返回的是最后一个时间步长(the last input time step)的隐藏状态输出( the hidden state output)以及单元状态( cell state);
  3. return_sequencesreturn_state 两者可以同时使用。

要具体理解这两个参数的意思,我们首先需要了解一下RNN/LSTM的简单背景,这里只做简单介绍,具体细节还请参考具体的教科书或者论文。

RNN/LSTM 简介

最基本的循环神经网络RNN会遭遇“梯度消失”(vanishing gradients)的问题,因此很难捕捉长期的时间相关关系。
而Long Short-Term Memory(LSTM)能够解决这一问题,因为在每一个RNN单元中引入了“门”(gate)这个概念,使得模型能够通过反向传播(backpropagation)成功训练以表面梯度消失问题。
LSTM结构
在上图中可以看到对每一个RNN单元,有对应的输入数据X<t> (t = 1,2,3…),以及上一个单元的输出a<t-1> ,对每个单元,有隐藏状态输出( the hidden state output)以及单元状态( cell state)两个参数,之前提到的a<t> 就是隐藏状态输出,前一个单元的隐藏状态输出又会作为后一个单元的输入。对于每一个单元本身的单元状态( cell state),不同的RNN算法也有对应的计算方法。比如下图的GRU与LSTM,对于GRU, a<t> = c<t> ,而LSTM算法中,两者是不同的。
GRU/LSTM
上面的c<t> 的结果就是所谓的单元状态( cell state)。不用担心有点晕,其实只需要记住两点:

  1. a<t> 对应隐藏状态输出( the hidden state output)
  2. c<t> 对应单元状态( cell state)
    上面俩对应的就是之前提到的return_sequencesreturn_state这两个参数的设置。

Return sequences

Return sequences返回的是隐藏状态输出( the hidden state output)a<t>,默认设置为False,这意味着Keras只会输出最后一个隐藏层的结果,这个结果可以认为是整段输入序列的简单代表,有时候这正是我们想要的结果,比如一些特定的分类任务(如文本情感分析)或者回归任务(预测明天的股价)。
但是有的时候我们需要整个序列的输出,这时就需要把return_sequences设置为True。
下面用一个简单的例子来说明。
假设我们只有一个输入数据,这个数据有3个时间步长,最后的输出的也是一维数据,比如:

t1 = 0.1
t2 = 0.2
t3 = 0.3

所以我们的问题就可以简化成:输入3个连续的数字,得到一个数字。
完整的代码如下:

from keras.models import Model
from keras.layers import Input
from keras.layers import LSTM
from numpy import array
# define model
#shape=(3,1)代表输入数据的维度,问题是3个输入的数字,一个输出的数字,所以是(3,1)
inputs1 = Input(shape=(3, 1))
lstm1 = LSTM(
  • 8
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: KerasLSTM(Long Short-Term Memory)是一种循环神经网络RNN),它专门用于处理序列数据。LSTM能够记住先前的输入和状态,并在处理后续输入时使用这些信息进行预测。 在Keras,可以使用`LSTM`层来添加LSTM模型。`LSTM`层有几个参数,如下所示: - `units`:LSTM层的输出维度大小。 - `return_sequences`:布尔值,控制LSTM层是否返回完整的输出序列或仅返回最后一个时间步的输出。 - `input_shape`:输入张量的形状。 - `activation`:激活函数。 - `dropout`:控制LSTM层的丢弃率。 以下是一个简单的LSTM模型: ```python from keras.models import Sequential from keras.layers import LSTM, Dense model = Sequential() model.add(LSTM(units=128, input_shape=(10, 1))) model.add(Dense(units=1)) model.compile(loss='mse', optimizer='adam') ``` 在上述代码,我们创建了一个包含一个LSTM层和一个全连接层的模型。LSTM层的输出维度为128,输入张量的形状为(10, 1),表示每个序列有10个时间步,每个时间步有1个特征。全连接层的输出维度为1,用于回归任务。模型使用均方误差(MSE)作为损失函数,使用Adam优化器进行优化。 ### 回答2: KerasLSTM是一种常用的循环神经网络模型结构。LSTM(Long Short-Term Memory)是一种能够解决传统RNN模型长期依赖问题的特殊类型的循环神经网络LSTM细胞具有三个门控,分别是输入门(input gate)、遗忘门(forget gate)和输出门(output gate),这三个门控能够分别控制输入数据的加入、遗忘以及输出。通过这些门控的控制,LSTM能够更好地记忆和利用时间序列的长期依赖关系。这一点使得LSTM在处理自然语言处理和时间序列数据时尤为重要。 在Keras,可以通过使用"LSTM"层来构建LSTM模型。LSTM层接受输入数据的形状为(batch_size, timesteps, input_dim),其batch_size表示批次大小,timesteps表示时间步数,input_dim表示输入特征的维度。可以通过传递参数设置隐藏层的节点数、dropout值及其他超参数来配置LSTM层。 LSTM层的输出数据形状为(batch_size, units)或(batch_size, timesteps, units),其units表示输出维度。可以根据具体任务需要将LSTM层输出的结果直接连接到其他层进行进一步的模型构建。 除了"LSTM"层,Keras还提供了其他相关的LSTM变体,如"CuDNNLSTM"层(在支持GPU的环境下加速LSTM计算)和"GRU"层(一种类似LSTM但计算量更小的循环神经网络模型结构)。 总之,KerasLSTM层提供了一种方便易用的方式来构建和训练具有长期依赖关系的循环神经网络模型,特别适用于处理自然语言处理和时间序列相关的任务。 ### 回答3: KerasLSTM是一种长短期记忆(Long Short Term Memory)模型,在深度学习常被用于处理时间序列数据和自然语言处理任务。 LSTM是一种循环神经网络RNN)的变体,具有独特的记忆单元。相比传统的RNNLSTM通过门控机制来控制信息的流动,避免了长期依赖问题和梯度消失问题。 LSTM包含了三个门控:输入门(Input Gate),忘记门(Forget Gate)和输出门(Output Gate)。输入门负责决定哪些信息将被更新到记忆单元,忘记门负责决定哪些信息将被遗忘,而输出门负责决定哪些信息将被输出。 在Keras使用LSTM,首先需要导入LSTM模型类,然后使用该类创建LSTM层。可以通过设置参数来配置LSTM层的结构,如隐藏单元的数量、输入序列的长度等。 LSTM层可以与其他层一起构建神经网络模型。在训练过程,可以通过反向传播算法更新LSTM层的参数,以提高模型的性能。训练完成后,可以使用该模型对新的数据进行预测。 在实际应用LSTM在多个领域都取得了优秀的效果。例如,在语音识别LSTM可以实现自动语音转文字;在机器翻译LSTM可以将一种语言转换为另一种语言;在股票预测LSTM可以根据历史数据来预测股价的走势等。 总之,KerasLSTM提供了一种强大的工具来处理时间序列数据和自然语言处理任务,通过其特有的门控机制,可以有效解决传统RNN的一些问题,成为了深度学习领域的重要技术。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值