题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5086
题目大意:
给定一个序列,求这个序列的子序列的和,再求所有子序列总和,这些子序列是连续的。去题目给的第二组数据的
3
1 2 3
这个序列的子序列有 [1]、[2]、[3]、[1、2]、[2、3]、[1、2、3],这些子序列的和是分别是1、2、3、3、5、6。再将这些和加起来
1+2+3+3+5+6=20这个就是最终的答案。
解题思路:
我们假设n等于5。序列为1、2、3、4、5。然后我们将它们如下排列,每行表示一个序列
1
2
1 2
3
2 3
1 2 3
4
3 4
2 3 4
1 2 3 4
5
4 5
3 4 5
2 3 4 5
1 2 3 4 5
我们从中会发现序列中的a[i](表示序列第i个数),不管在那堆里面,a[i]有i个。总共有几个a[i]*i呢,可以看出有n-i+1个。
所以推出公式为∑a[i]*i*(n-i+1)就是正确的答案了
为什么我们要推公式,是因为我们暴力做的话时间复杂度是O(n^2),根据题目给的数据,肯定会超时。
推出的公式的时间复杂度是O(n),题目给的数据,是不会超时的。
代码:#include <iostream>
#include<cstdio>
#define mod 1000000007
using namespace std;
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
int N;
int sum=0;
__int64 s;
cin>>N;
for(int i=1;i<=N;i++)
{
scanf("%I64d",&s);//此处输入得用scanf,用cin会超时
sum=(sum+s*i%mod*(N-i+1))%mod;
}
printf("%d\n",sum);
}
return 0;
}