hdu 5086 Revenge of Segment Tree(思路)

Revenge of Segment Tree

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1539    Accepted Submission(s): 551


Problem Description
In computer science, a segment tree is a tree data structure for storing intervals, or segments. It allows querying which of the stored segments contain a given point. It is, in principle, a static structure; that is, its content cannot be modified once the structure is built. A similar data structure is the interval tree.
A segment tree for a set I of n intervals uses O(n log n) storage and can be built in O(n log n) time. Segment trees support searching for all the intervals that contain a query point in O(log n + k), k being the number of retrieved intervals or segments.
---Wikipedia

Today, Segment Tree takes revenge on you. As Segment Tree can answer the sum query of a interval sequence easily, your task is calculating the sum of the sum of all continuous sub-sequences of a given number sequence.
 

Input
The first line contains a single integer T, indicating the number of test cases. 

Each test case begins with an integer N, indicating the length of the sequence. Then N integer Ai follows, indicating the sequence.

[Technical Specification]
1. 1 <= T <= 10
2. 1 <= N <= 447 000
3. 0 <= Ai <= 1 000 000 000
 

Output
For each test case, output the answer mod 1 000 000 007.
 

Sample Input
  
  
2 1 2 3 1 2 3
 

Sample Output
  
  
2 20
Hint
For the second test case, all continuous sub-sequences are [1], [2], [3], [1, 2], [2, 3] and [1, 2, 3]. So the sum of the sum of the sub-sequences is 1 + 2 + 3 + 3 + 5 + 6 = 20. Huge input, faster I/O method is recommended. And as N is rather big, too straightforward algorithm (for example, O(N^2)) will lead Time Limit Exceeded. And one more little helpful hint, be careful about the overflow of int.
题意:求出序列所有连续区间的和

思路:我们可以枚举以a[i]区间第一个数的全部连续序列和,这样就能得到递推关系了。 以a[i]开始的区间的和会等于以a[i-1]开始的区间的和减去(n-i+1)*a[i-1]

注意和可能会炸long long!!!!!!!!要步步取模,因为都是加法和减法不会影响结果!

代码:

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
using namespace std;
#define N 500000
#define mod 1000000007
long long a[N],sum[N];
long long ans,n;
int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%lld",&n);
        long long s=0;
        for(int i=0;i<n;i++)
            {
                scanf("%lld",&a[i]);
                if(i==0) sum[i]=a[i];
                else sum[i]=sum[i-1]+a[i];
                s=(s+sum[i])%mod;
            }
        ans=s;
        for(int i=1;i<n;i++)
            {
                s=((s-a[i-1]*(n-i+1))%mod+mod)%mod;
                ans=(ans+s)%mod;
            }
            printf("%lld\n",ans%mod);
    }
    return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值