01背包问题,是用来介绍动态规划算法最经典的例子,网上关于01背包问题的讲解也很多,我写这篇文章力争做到用最简单的方式,最少的公式把01背包问题讲解透彻。
01背包的状态转换方程 f[i,j]= Max{ f[i-1,j-Wi]+Pi( j >= Wi ), f[i-1,j] }
f[i,j]表示在前i件物品中选择若干件放在承重为 j 的背包中,可以取得的最大价值。
Pi表示第i件物品的价值。
决策:为了背包中物品总价值最大化,第 i件物品应该放入背包中吗 ?
题目描述:
有编号分别为a,b,c,d,e的五件物品,它们的重量分别是2,2,6,5,4,它们的价值分别是6,3,5,4,6,现在给你个承重为10的背包,如何让背包里装入的物品具有最大的价值总和?
name | weight | value | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
a | 2 | 6 | 0 | 6 | 6 | 9 | 9 | 12 | 12 | 15 | 15 | 15 |
b | 2 | 3 | 0 | 3 | 3 | 6 | 6 | 9 | 9 | 9 | 10 | 11 |
c | 6 | 5 | 0 | 0 | 0 | 6 | 6 | 6 | 6 | 6 | 10 | 11 |
d | 5 | 4 | 0 | 0 | 0 | 6 | 6 | 6 | 6 | 6 | 10 | 10 |
e | 4 | 6 | 0 | 0 | 0 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
只要你能通过找规律手工填写出上面这张表就算理解了01背包的动态规划算法。
首先要明确这张表是从右到左,至底向上生成的。
为了叙述方便,用e10单元格表示e行10列的单元格,这个单元格的意义是用来表示只有物品e时,有个承重为10的背包,那么这个背包的最大价值是6,因为e物品的重量是4,背包装的了,把e装进去后价值为6。然后是e9单元格表示背包承重9,只有物品e, e装进去后,背包价值为6,接着是 e8, e7单元格,一直到e3单元格表示背包承重3,但物品e承重4,装不了,所以e3=0,
对于d10单元格,表示只有物品e,d 时,承重为10的背包,所能装入的最大价值,是10,因为物品e,d这个背包都能装进去。对于承重为9的背包,d9=10,是怎么得出的呢?
根据01背包的状态转换方程,需要考察两个值,
一个是f[i-1,j],对于这个例子来说就是e9的值6,另一个是f[i-1,j-Wi]+Pi;
在这里,
f[i-1,j]表示我有一个承重为9的背包,当只有物品e可选时,这个背包能装入的最大价值
f[i-1,j-Wi]表示我有一个承重为4的背包(等于当前背包承重减去物品d的重量),当只有物品e可选时,这个背包能装入的最大价值
f[i-1,j-Wi]就是指单元格e4值为6,Pi指的是d物品的价值,即4
由于f[i-1,j-Wi]+Pi = 6 + 4 = 10 大于f[i-1,j] = 6,所以物品d应该放入承重为9的背包所以d9=10.
相关习题:HDU2602