神经网络学习笔记(七)

在前面几章中,我们介绍了随机梯度下降的框架和各个参数误差的求法,本章将在此基础之上介绍用于训练神经网络的反向传播算法。

一、反向传播算法(Backpropagation Algorithm)

回顾随机梯度算法的流程:

  • 初始化各个参数 θ θ={w(1),b(1),...,w(L+1),b(L+1)}
  • 循环 N
    • 对于每一个训练样本(x(t),y(t))
    • 求目标函数的反梯度方向,即 Δ=θl(f(x(t);θ),y(t))λθΩ(θ)
    • 更新参数 θθ+αΔ

    其中,一个很重要的过程就是如何求目标函数的反梯度方向。假定我们已经对神经网络进行了前向传播(即通过输入计算出了各层的预激励和激励,以及最终的误差函数),综合前面几张我们说的参数误差梯度的求法,我们有:

    • 计算输出梯度
      • a(L+1)(x)logf(x)y=(e(y)f(x)) ,详见第四章
    • 对于 L+1 1 中的每一层k,有:
      • 计算隐层梯度
        W(k)logf(x)y=(a(k)(x)logf(x)y)(h(k1)(x))T
        b(k)logf(x)y=a(k)logf(x)y
        详见第六章
      • 计算下一层激励梯度
        a
      • 计算下一层预激励梯度
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值