Pandas常见方法(3)-pandas分层索引构建、按层级对换和排序、按层级聚合

这篇博客介绍了Pandas中分层索引的构建,包括Series和DataFrame的构建方法,详细阐述了如何按层级对换和排序,以及如何进行按层级聚合操作。通过实例展示了如何命名、交换和排序分层索引,并提供了相应的代码实现。
摘要由CSDN通过智能技术生成

说明:本blog基于python3, pandas 1.3.5, numpy 1.22.0版本


前言

本文主要介绍pandas的分层索引构建,按层级对换和排序,按层级聚合,共3个部分。并附有代码实例。其中分层索引构建由Series和DataFrame两个研究对象组成;其他两个部分都是以DataFrame为基础。

一、分层索引构建

1.1 Series数据结构

我们可以采用如下方式创建分层索引


import pandas as pd
import numpy as np

a = pd.Series([1,2,3,4,5,6], index = [["a", "a", "b", "b", "c", "c"],["11","22","11","22","11","22"]])
print(a)

###结果
#a  11    1
#   22    2
#b  11    3
#   22    4
#c  11    5
#   22    6
#dtype: int64

由此可见,有几层索引,index参数就是长度为几的list,list中的每个元素依然是list,长度必须与Series长度相等!!!

本题如果我们想取出索引为 “b” 的数组

b = a["b"]
print(b)

结果如下

11    3
22    4
dtype: int64

本题如果我们想取出索引为 (“b” ,“11”)的数组

c = a["b","11"]
print(c)

结果如下

3

很好,符合我们预期
其实,与正常Series取某索引的方法相同。

1.2 两层索引的Series转化为DataFrame

然后,我们想把含有两层索引的Series转化为DataFrame,
使用unstack方法, 方法原理是Series外层索引作为新DataFrame的index,内层索引作为新DataFrame的columns

代码如下

###由分层索引的Series转化为DataFrame,外层索引作为新DataFrame的index,内层索引作为新DataFrame的columns

d = a.unstack()
print
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Efred.D

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值