Peer pressure and incentive mechanisms in social networks(博弈论+机制设计) 论文阅读笔记

Peer pressure and incentive mechanisms in social networks 论文阅读笔记

一、基本信息

  • 题目:社会网络中的同伴压力以及激励机制
  • 作者:Chuang Deng、Chao Ye、Lin Wang、Zhihai Rong、Xiaofan Wang

二、文章摘要

  • 以下内容取自原文摘要部分:合作被视为我们所期待的社会准则。在这项工作中,建立基于空间公共货物博弈论的框架去研究同伴压力与激励机制是如何影响合作演化的。建立了一个参数可调的统一模型来代表纯个人机制、带有同伴压力的个人机制和社会机制的影响,表明当背叛者感受到的同伴压力和奖励之和大于合作的有效成本时,合作就会占优势。正因为同伴压力是由博弈中其他合作者造成的,群组大小与网络结构至关重要。尤其是大群组和异质网络结构会使背叛者感受到更多的同伴压力从而促进合作的演化和维持。
  • 我的总结:本文的核心关键词有两个:同伴压力与激励机制。共衍生三种不同机制分别是:纯个人机制、带同伴压力的个人机制、带同伴压力的社会机制。分别在非结构化群体、结构化同质群体、结构化异质群体中,研究二者对于合作的促进作用。

三、核心模型

  • 公共品博弈(public goods game)的基础上修改,构建一个结合同伴压力激励机制的框架模型,在此基础上了解他们对于合作的促进作用。
  • 在公共品博弈中共有 n n n位参与者。其中合作者(C)可以向公共池中贡献 c c c c c c是固定的),背叛者(D)不提供任何贡献。最终所有参与者平分公共池。每位合作者的贡献 c c c都会乘一个增大因子 r r r加入到公共池中。这是公共品博弈的基础设定,接下来我们分三个机制来具体分析。
  • 一、不带同伴压力的个人机制(奖励分派给合作者)。合作者和背叛者的收益定义如下。假设一共有 j j j位合作者,那么提供的总体公共池就是 r j c rjc rjc δ p \delta_p δp设定为合作者奖励。
    p C ( j ) = r j c n − c + δ p p D ( j ) = r j c n p_C(j)=\frac{rjc}{n}-c+\delta_p\\ p_D(j)=\frac{rjc}{n} pC(j)=nrjcc+δppD(j)=nrjc
  • 二、带同伴压力的个人机制(奖励分配给合作者)。合作者和背叛者的收益定义如下。 α j \alpha j αj表示背叛者被 j j j位合作者看到失信行为所受到的压力总和。注意此处的压力不同于惩罚,惩罚是直接造成损失,而压力是指内心的愧疚或者对于未来自己失信行为的担忧。
    p C ( j ) = r j c n − c + δ p p D ( j ) = r j c n − α j p_C(j)=\frac{rjc}{n}-c+\delta_p\\ p_D(j)=\frac{rjc}{n}-\alpha j pC(j)=nrjcc+δppD(j)=nrjcαj
  • 三、带有同伴压力的社会机制(奖励分配给其他合作者)。合作者和背叛者的收益定义如下。系统中每多一个其他合作者,代理者(无论合作者、背叛者)都可以获得 δ m \delta_m δm的奖励。我们知道社会机制会加强同伴压力,因此在单位同伴压力 α \alpha α的基础上增加一个 α ′ \alpha' α奇怪?社会机制中背叛者反而比合作者获得更多的奖励,只是因为合作者没法奖励自己?在已知社会机制会加强同伴压力的前提下完成的建模,那这条结论从何而得呢?
    p C ( j ) = r j c n − c + δ m ( j − 1 ) p D ( j ) = r j c n − ( α + α ′ ) j + δ m j p_C(j)=\frac{rjc}{n}-c+\delta_m(j-1)\\ p_D(j)=\frac{rjc}{n}-(\alpha+\alpha')j+\delta_m j pC(j)=nrjcc+δm(j1)pD(j)=nrjc(α+α)j+δmj
  • 我们可以将三种机制的合作者/背叛者收益用统一的方式表示。我们设定 γ = r n \gamma=\frac{r}{n} γ=nr,并且一般情况下 γ < 1 \gamma<1 γ<1。设定 α m = α + α ′ \alpha_m=\alpha+\alpha' αm=α+α。合作者和背叛者的收益表示如下:
    p C ( j ) = γ j c − c + δ p + δ m ( j − 1 ) p D ( j ) = γ j c − α p j − α m j + δ m j p_C(j)=\gamma jc-c+\delta_p+\delta_m(j-1)\\ p_D(j)=\gamma jc-\alpha_pj-\alpha_mj+\delta_mj pC(j)=γjcc+δp+δm(j1)pD(j)=γjcαpjαmj+δmj
    对于不带同伴压力的个人机制 δ p > 0 , α p = 0 , δ m = 0 , α m = 0 \delta_p>0,\alpha_p=0,\delta_m=0,\alpha_m=0 δp>0,αp=0,δm=0,αm=0
    对于带有同伴压力的个人机制 δ p > 0 , α p > 0 , δ m = 0 , α m = 0 \delta_p>0,\alpha_p>0,\delta_m=0,\alpha_m=0 δp>0,αp>0,δm=0,αm=0
    对于带有同伴压力的社会机制 δ p = 0 , α p = 0 , α m > 0 , α m > 0 \delta_p=0,\alpha_p=0,\alpha_m>0,\alpha_m>0 δp=0,αp=0,αm>0,αm>0

四、分析过程

  • 非结构化群体
    公共品博弈应用于随机形成的尺寸为 n n n的群组,随机采样挑选参与者会使得群组符合二项分布。我们用 x x x来代表参与者中合作者的比例。合作者和背叛者在二项分布下的平均收益为:
    f C = ∑ j = 0 n − 1 C n − 1 j x j ( 1 − x ) n − 1 − j p C ( j + 1 ) f D = ∑ j = 0 n − 1 C n − 1 j x j ( 1 − x ) n − 1 − j p D ( j ) f_C=\sum_{j=0}^{n-1}C_{n-1}^{j}x^j(1-x)^{n-1-j}p_C(j+1)\\ f_D=\sum_{j=0}^{n-1}C_{n-1}^{j}x^j(1-x)^{n-1-j}p_D(j) fC=j=0n1Cn1jxj(1x)n1jpC(j+1)fD=j=0n1Cn1jxj(1x)n1jpD(j)
    (问为啥求和都是从0到n-1而不是n呢?因为当合作者为0,背叛者为n时,公共池为0,所有人的收益都是0,求和方面可以不考虑)
    基于二项分布的规律,代入 p C ( j ) , p D ( j ) p_C(j),p_D(j) pC(j),pD(j) f C , f D f_C,f_D fC,fD中得到以下式子。为了分析合作策略何时占优,我们需要计算合作者平均收益与背叛者平均收益之间的差值。
    f C = γ c [ ( n − 1 ) x + 1 ] − c + δ p + δ m [ ( n − 1 ) x ] f D = γ c [ ( n − 1 ) x ] − α p [ ( n − 1 ) x ] − α m [ ( n − 1 ) x ] + δ m [ ( n − 1 ) x ] f C − f D = γ c − c + δ p + ( α p + α m ) ( n − 1 ) x f_C=\gamma c[(n-1)x+1]-c+\delta_p+\delta_m[(n-1)x]\\ f_D=\gamma c[(n-1)x]-\alpha_p[(n-1)x]-\alpha_m[(n-1)x]+\delta_m[(n-1)x]\\ f_C-f_D=\gamma c-c+\delta_p+(\alpha_p+\alpha_m)(n-1)x fC=γc[(n1)x+1]c+δp+δm[(n1)x]fD=γc[(n1)x]αp[(n1)x]αm[(n1)x]+δm[(n1)x]fCfD=γcc+δp+(αp+αm)(n1)x
    我们发现在做差值的过程中,参数 δ m \delta_m δm被消去了。也就是说真正影响促进合作的因素就是同伴压力 ( α p + α m ) (\alpha_p+\alpha_m) (αp+αm)
    让我们分析在三种不同机制下,什么条件下合作会占优:
    纯个人机制:当且仅当 δ p > ( 1 − γ ) c \delta_p>(1-\gamma)c δp>(1γ)c时,合作策略占优。
    带同伴压力的个人机制:当 δ p > ( 1 − γ ) c \delta_p>(1-\gamma)c δp>(1γ)c时,合作策略占优;当 δ p < ( 1 − γ ) c , δ p + α p ( n − 1 ) > ( 1 − γ ) c \delta_p<(1-\gamma)c,\delta_p+\alpha_p(n-1)>(1-\gamma)c δp<(1γ)c,δp+αp(n1)>(1γ)c,那么存在一个不稳定均衡点 x e = ( 1 − γ ) c − δ p α p ( n − 1 ) x_e=\frac{(1-\gamma)c-\delta_p}{\alpha_p(n-1)} xe=αp(n1)(1γ)cδp;当 δ p + α p ( n − 1 ) < ( 1 − γ ) c \delta_p+\alpha_p(n-1)<(1-\gamma)c δp+αp(n1)<(1γ)c时,背叛者占优。
    带同伴压力的社会机制:当 α m ( n − 1 ) > ( 1 − γ ) c \alpha_m(n-1)>(1-\gamma)c αm(n1)>(1γ)c,存在一个不稳定均衡点 x e = ( 1 − γ ) c α m ( n − 1 ) x_e=\frac{(1-\gamma)c}{\alpha_m(n-1)} xe=αm(n1)(1γ)c,并且 x = 1 x=1 x=1变成一个稳定均衡点;当 α m ( n − 1 ) < ( 1 − γ ) c \alpha_m(n-1)<(1-\gamma)c αm(n1)<(1γ)c中段不稳定均衡点消失并且 x = 1 x=1 x=1也变成不稳定均衡点。
    结合图像来分析上述结论。我们用 x ˙ \dot{x} x˙表示 x x x的梯度,也就是衡量合作者比例变化快慢以及方向的变量,当 x ˙ > 0 \dot{x}>0 x˙>0时合作者比例增加反之下降。( a a a) ( c c c)图表示带有同伴压力的个人机制,不同 δ p \delta_p δp数值以及规模 n n n对梯度的影响;( b b b)( d d d)图表示带有同伴压力的社会机制,不同 δ p \delta_p δp值以及规模 n n n对梯度的影响。下图中凡是梯度曲线大部分在0以上的都说明演化朝着合作者增加的方向进行。
    在这里插入图片描述
  • 结构化同质人群
    之前的公共品博弈我们是在非结构化人群中研究的。结构化人群的意思其实就是网络结构,每个参与者都在网络中收到结构的约束拥有不同的直接邻居。设定每个个体 i i i其邻居个数为 k i k_i ki。我们设定博弈过程为两阶段博弈,第一阶段每个参与者以自己为中心进行一个 k i + 1 k_i+1 ki+1规模的公共品博弈,结束之后统计个人的累计收益 F i F_i Fi;第二阶段每个参与者随机选择一个邻居以概率 W ( s i ← s h ) = [ 1 + e − β ( F h − F i ) ] − 1 W(s_i\leftarrow s_h)=[1+e^{-\beta(F_h-F_i)}]^{-1} W(sish)=[1+eβ(FhFi)]1模仿策略。
    下图所示为模拟实验结果图示。左侧一列是平均度数 k ˉ = 4 \bar{k}=4 kˉ=4的网络结构,右侧一列是平均度数 k ˉ = 8 \bar{k}=8 kˉ=8的网络结构。颜色深浅代表合作者比例 x x x。第一、二、三行两图分别是纯个人机制下、带同伴压力个人机制下、带同伴压力社会机制下的参数研究。我们发现在无结构人群中不可能存在合作者的条件下,结构人群模拟实验的结构都可能存在合作者。并且平均度数越高,合作者的比例近似更大。因此结构化网络增强同伴压力,同时网络结构更复杂同伴压力也就越强烈。
    在这里插入图片描述
  • 结构化异质人群
    相较于上一部分的结构化同质人群,异质人群的区别是参与者之间的度数差别较大。先摆结论:异质网络中背叛者会感受到更大的同伴压力,因此会更加促进合作。我们设置一个无标度(scale-free)的网络模型,其中度分布为 p k p_k pk,其符合以下幂次定理关系。当 τ \tau τ增大时,网络更加同质。
    p k ∼ k − τ p_k\sim k^{-\tau} pkkτ
    分析下图可得:随着 τ \tau τ的增大,网络同质性加强,也就是说网络中节点的度数趋于相同,同伴压力显著降低,对合作的促进作用也是显著降低。
    在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值