【数学思维】数理经济中一些基本概念

  • 非数学专业学生因科研需要,补充一些数分与拓扑学中的常用概念。有不准确的地方欢迎大家指正。
开集 open set 与闭集 closed set
  • 内点 interior point C C C是某个集合。如果 x ∈ C x\in C xC并且 ∃ ϵ > 0 \exist \epsilon>0 ϵ>0使得 { y : ∣ ∣ x − y ∣ ∣ ≤ ϵ } ⊆ C \{y:||x-y||\le \epsilon\}\subseteq C {y:∣∣xy∣∣ϵ}C,那么称 x x x是集合 C C C的内点。通俗点说, x ∈ C x\in C xC并且 x x x的邻域范围内的点也在 C C C内,那么 x x x就是内点。
  • 开集 open set:集合内的点都是内点的集合称为开集。
  • 闭集 closed set:补集是开集的集合是闭集。(通过求补的方式定义,也是数学中的常见定义方式)
  • 闭集有多种理解和判断方式:包含所有边界点的集合是闭集。
  • 开集的定义是严格的,因此判断闭集时可以转为判断其补集是否是开集。存在集合既不是开集也不是闭集,包含部分边界点的集合既不是开集也不是闭集。比如集合 ( 0 , 1 ] (0,1] (0,1]其补集 [ 0 , 1 ) [0,1) [0,1)不满足所有点都是内点的条件(0处邻域上的点不属于 [ 0 , 1 ) [0,1) [0,1))故该集合与其补集既不是开集也不是闭集。
  • 下图中左边是闭集(边界全部在集合里),右边是开集(边界全部不在集合里)。
    在这里插入图片描述
紧集 compact set
  • 开覆盖 open covering:一组开集取并之后能够将集合 S S S完全覆盖,则称这一组开集为集合 S S S的开覆盖。开覆盖中开集的个数可以是有限个可以是无限个。
  • 有限子覆盖 finite subcovering:集合 S S S的某个开覆盖中挑选其中有限个开集也构成一组开覆盖,那么称之为有限子覆盖。
  • 紧集 compact set:集合 S S S的任意开覆盖都存在一个有限子覆盖,那么称该集合为一个紧集。
  • 从定义出发证明一个集合是紧集比较复杂,需要考虑该集合所有开覆盖的可能形式,并分别为其找到有限子覆盖。从定义出发证明一个集合不是紧集的方法是举反例,即找到一个特殊的开覆盖,证明其不存在有限子覆盖。\
  • 下图中 T 1 , T 2 , T 3 , T 4 , T 5 , T 6 T_1,T_2,T_3,T_4,T_5,T_6 T1,T2,T3,T4,T5,T6便是集合 S S S的一组开覆盖,并且还是个有限的开覆盖。
    在这里插入图片描述
集合有界 bounded set
  • 有界 bounded:如果存在一个有限大小的邻域半径 M M M,使得原点处的以 M M M为半径的邻域能够包裹住集合 S S S,那么称集合 S S S就是有界的。
  • 左图中,集合 S S S可以被以原点为中心的邻域包裹,因此集合 S S S是有界的;有图中表示的是第一象限的所有点构成的集合,无法被以原点为中心的有限大小的邻域包裹,因此该集合无界。
    在这里插入图片描述
度量空间 metric space
  • 度量空间 ( X , d ) (X,d) (X,d)包括集合 X X X和对应的度量函数 d : X × X → R d:X\times X\rightarrow \mathbb{R} d:X×XR,同时度量函数要满足以下四个公理:
    • 非负性: ∀ x , y ∈ X , d ( x , y ) ≥ 0 \forall x,y\in X,d(x,y)\ge 0 x,yX,d(x,y)0
    • 非退化性: x , y ∈ X , d ( x , y ) = 0 ⇔ x = y x,y\in X,d(x,y)=0\Leftrightarrow x=y x,yX,d(x,y)=0x=y
    • 对称性: ∀ x , y ∈ X , d ( x , y ) = d ( y , x ) \forall x,y\in X,d(x,y)=d(y,x) x,yX,d(x,y)=d(y,x)
    • 三角不等式: ∀ x , y , z ∈ X , d ( x , y ) ≤ d ( x , z ) + d ( z , y ) \forall x,y,z\in X,d(x,y)\le d(x,z)+d(z,y) x,y,zX,d(x,y)d(x,z)+d(z,y)
  • 举例说明:集合 X X X是所有整数,度量规定为 d ( x , y ) = ∣ x − y ∣ d(x,y)=|x-y| d(x,y)=xy,显然符合上述四条公理,因此 ( X , d ) (X,d) (X,d)构成一组度量空间。简单来说,度量空间就是元素两两之间能够计算距离的集合,而距离有很多种定义方式,但必须满足上述四条公理。
欧式空间 euclidean space
  • 欧氏空间 euclidean space:由 n n n维实数向量构成的空间称为欧式空间,记为 R n \mathbb{R}^n Rn。欧式空间与度量 d ( x , y ) = ∑ i = 1 n ( x i − y i ) 2 d(x,y)=\sqrt{\sum_{i=1}^n(x_i-y_i)^2} d(x,y)=i=1n(xiyi)2 构成一个度量空间 ( R n , d ) (\mathbb{R}^n,d) (Rn,d)
  • 对于欧式空间中的任意两个向量 x , y ∈ R n x,y\in \mathbb{R}^n x,yRn有如下关系:
    • x = y x=y x=y当且仅当 x i = y i , ∀ i x_i=y_i,\forall i xi=yi,i
    • x ≥ y x\ge y xy当且仅当 x i ≥ y i , ∀ i x_i\ge y_i,\forall i xiyi,i
    • x > y x>y x>y当且仅当 x ≥ y x\ge y xy且存在某个 j , x j > y j j,x_j>y_j j,xj>yj
    • x ≫ y x\gg y xy当且仅当 x i > y i , ∀ i x_i>y_i,\forall i xi>yi,i
  • 邻域 neighborhood:邻域定义在度量空间中。对于 x ∈ R n , ϵ ∈ R x\in \mathbb{R}^n,\epsilon\in \mathbb{R} xRn,ϵR,点 x x x ϵ \epsilon ϵ-邻域/ ϵ \epsilon ϵ-开球定义为 B ϵ ( x ) = { y ∈ R n ∣ d ( x , y ) < ϵ } B_{\epsilon}(x)=\{y\in \mathbb{R}^n|d(x,y)<\epsilon\} Bϵ(x)={yRnd(x,y)<ϵ}
闭包 closure
  • 聚点 accumulation point x ∈ A x\in A xA,点 x x x的任意大小的邻域都包含除点 x x x以外的其他属于集合 A A A中的点,那么称点 x x x为聚点。
  • 孤立点 isolated point x ∈ A x\in A xA,点 x x x存在某个邻域其中除了点 x x x自身以外不包含任何集合 A A A中的点,那么称点 x x x为孤立点。
  • 接触点=聚点+孤立点。闭包定义为接触点的全体。
  • 下图中集合 D = E + { a } D=E+\{a\} D=E+{a}。点 a a a存在半径很小的领域与集合 D D D只相交于点 a a a,因此点 a a a是孤立点;点 x x x的任意半径大小的邻域与集合 D D D相交都不止点 x x x自身,因此点 x x x是聚点。
    在这里插入图片描述
上包络 upper envelope、下包络 lower envelope
  • 一个曲线族中的曲线同时画在坐标系中,取每个点的上确界构成了该函数族的上包络曲线,取每个点的下确界构成了该函数族的下包络曲线。
上极限 limit superior、下极限 limit inferior
  • 上极限与下极限的符号表达是 lim ⁡ inf ⁡ , lim ⁡ sup ⁡ \lim \inf,\lim \sup liminf,limsup。这两个概念对于实值序列以及实值函数有着不同的含义。
  • 对于实值序列
    lim inf ⁡ n → ∞ x n : = lim ⁡ n → ∞ ( inf ⁡ m ≥ n x m ) lim sup ⁡ n → ∞ x n : = lim ⁡ n → ∞ ( sup ⁡ m ≥ n x m ) \liminf_{n\rightarrow \infty}x_n:=\lim_{n\rightarrow \infty}(\inf_{m\ge n}x_m)\\ \limsup_{n\rightarrow \infty}x_n:=\lim_{n\rightarrow \infty}(\sup_{m\ge n}x_m)\\ nliminfxn:=nlim(mninfxm)nlimsupxn:=nlim(mnsupxm)
    即序列 { x n } \{x_n\} {xn}的上极限是指 n → ∞ n\rightarrow \infty n下的上确界,下极限是指 n → ∞ n\rightarrow \infty n下的下确界。
  • 对于实值函数
    lim sup ⁡ x → a f ( x ) = lim ⁡ ϵ → 0 ( sup ⁡ { f ( x ) : x ∈ E ∩ B ( a ; ϵ ) \ { a } } ) lim inf ⁡ x → a f ( x ) = lim ⁡ ϵ → 0 ( inf ⁡ { f ( x ) : x ∈ E ∩ B ( a ; ϵ ) \ { a } } ) \limsup_{x\rightarrow a}f(x)=\lim_{\epsilon\rightarrow 0}(\sup \{f(x):x\in E\cap B(a;\epsilon)\backslash\{a\}\})\\ \liminf_{x\rightarrow a}f(x)=\lim_{\epsilon\rightarrow 0}(\inf \{f(x):x\in E\cap B(a;\epsilon)\backslash\{a\}\})\\ xalimsupf(x)=ϵ0lim(sup{f(x):xEB(a;ϵ)\{a}})xaliminff(x)=ϵ0lim(inf{f(x):xEB(a;ϵ)\{a}})
    即实值函数 f ( x ) f(x) f(x) a a a处的上极限是 a a a尽可能小的邻域内(与定义域的交集)的上确界,在 a a a处的下极限是 a a a尽可能小的邻域内(与定义域的交集)的下确界。
  • 总之,上、下极限指的就是极限状态下的上确界与下确界,只不过不同情况下极限的定义不同,序列的极限可能是最终值,函数的极限可能是自变量逼近某个值的值。
左连续、右连续、上半连续 upper semi-continuous、下半连续
  • 半连续性是数学分析领域中比连续性更弱的一种概念。如果一个函数既是上半连续的又是下半连续的,那么该函数是连续的,反之亦然。
  • 上半连续与下半连续的图像如下图所示。如果某个函数在每个点都是上/下半连续的,那么该函数就是上/下半连续的。
    在这里插入图片描述
  • 函数 f ( x ) f(x) f(x) x 0 x_0 x0处上/下半连续可以用上/下极限来表示:
    上半连续: lim sup ⁡ x → x 0 f ( x ) ≤ f ( x 0 ) 下半连续: lim inf ⁡ x → x 0 f ( x ) ≥ f ( x 0 ) \text{上半连续:}\limsup_{x\rightarrow x_0}f(x)\le f(x_0)\\ \text{下半连续:}\liminf_{x\rightarrow x_0}f(x)\ge f(x_0) 上半连续:xx0limsupf(x)f(x0)下半连续:xx0liminff(x)f(x0)
  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值