Optimal Contest Design for Simple Agents(博弈论+机制设计) 论文阅读笔记

一、基本信息

  • 题目:针对简单代理者的最优竞赛设计
  • 作者:ARPITA GHOSH、ROBERT KLEINBERG

二、文章摘要

  • 以下内容取自原文摘要部分:
  • 基于代理者策略行为精确模型设计的激励机制更加可能诱导出想要的结果。一个正在发展的领域文献表明:在很多情况下(无论线上线下)人们都不会像标准经济学代理者那样行动。在这些环境中,代理者的差异对于最优竞赛机制设计可能产生怎样的影响呢?本文中,我们在针对简单代理者的最优竞赛设计背景下探究这个问题,也就是说代理者只思考是否参与某个系统,而不思考提供的输入。具体来说,考虑一个竞赛,其中 n n n位潜在参赛者伴随着 ( q i , c i ) (q_i,c_i) (qi,ci),选择参与并且提交分数 q i q_i qi与代价 c i c_i ci或者选择不参与来最大化收益。负责人如何在 n n n个排位中分配总奖励 V V V以最大化某个递增的竞赛引导出的分数函数在如此定义的简单代理者中。
  • 我们首先解决这个问题通过设置所有代理者拥有相同的参与代价 c i = c c_i=c ci=c。这里,最大化递增的诱导贡献函数的竞赛总是一个简单竞赛,给排名靠前的参赛者以相同的奖励。这跟策略努力决策下类似模型的最优竞赛结构截然不同,最优竞赛要么是“赢者通吃”的竞赛要么很大可能奖励不平等,这取决于代理者代价函数的曲率。我们接下来通过异质代价函数来解决这个问题,其中代理者的类型存在两个维度 ( q i , c i ) (q_i,c_i) (qi,ci),极大复杂化了均衡的计算。伴随着异质代价函数,最优竞赛取决于最大化的目标函数,这里我们的主要结果是,当负责人的目标函数是最大化诱导贡献时,“赢者通吃”竞赛是最优竞赛的3级近似。该结果的证明依赖于“子均衡”引理,该引理建立在均衡中诱导贡献的分布与子均衡(对于参与者来说的最优策略组合)之间的统计领域关系。均衡与子均衡之间的关系可能未来会有更大的研究价值。
  • 关键词:Contest Design、Crowdsourcing、Mechanism Design、User-Generated Content
  • 我的总结:本文关注于针对简单代理者的最优竞赛设计,简单代理者是指决策在参与与不参与之间二选一。在两种模型分类下研究,在同质代价函数的设定下得出了最优竞赛的结构,在异质代价函数的设定下得出了近似性质的结果。

三、背景引言

  • 大量线上系统设计竞赛,比如:社会计算、众包平台、匹配市场、排名与推荐系统等等。而竞赛简单来说,就是代理者执行决策决定系统的输入与输出。除了传统、实体竞赛发展广泛以外,近些年来线上竞赛兴起
  • 当模型具体、目标明确时,基于经济学的竞赛设计往往是更有效的。然而近期研究发现,在很多情况设定下人们并不会像标准经济学代理者一样执行决策,我们将这类“不标准”的代理者称为简单代理者(Simple Agent),潜在参与者们针对是否参与竞赛制定策略,而不针对所提交的品质指定策略
  • 经济学竞赛领域已经有了庞大的研究基础。根源性工作来自于Lazear and Rozen[1981],主张竞赛(排名锦标赛)可以作为一个有效的机制去激励策略性代理者产生努力。最优竞赛设计的问题(如何分配奖项以诱导最理想的结果)已经在多种设定下被研究,包括异质/同质参赛者、针对奖项的风险中性/厌恶偏好、多种信息模型与结果观测模型以及负责人的多种目标与限制条件
  • 针对最优竞赛设计,目前的大量研究成果都集中于参赛者做出策略努力选择,而针对本文的简单代理者模型,相关研究工作较少。

四、核心模型

  • Agents)共有 n n n位潜在参赛者。参赛者都是简单的(simple),意味着参赛者只针对是否参与竞赛制定策略,而不会针对调整努力的多少来指定策略。也就是说,参赛者只有两个选择:参与并贡献一定努力承担一定代价、不参与。每位参赛者的特性表现在贡献-代价对 ( q i , c i ) (q_i,c_i) (qi,ci),具体来说参赛者 i i i参与竞赛产生既定的贡献 q i q_i qi并承担代价 c i c_i ci。设定每位参赛者的 ( q i , c i ) (q_i,c_i) (qi,ci)都独立同分布于联合分布 F ( q , c ) F(q,c) F(q,c)(所有人已知)。
  • Contestsrank-order竞赛表示为 M ( v 1 , . . . , v n ) M(v_1,...,v_n) M(v1,...,vn),其中 v i v_i vi表示给排名第 i i i<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值