Optimal Contest Design for Simple Agents(博弈论+机制设计) 论文阅读笔记

一、基本信息

  • 题目:针对简单代理者的最优竞赛设计
  • 作者:ARPITA GHOSH、ROBERT KLEINBERG

二、文章摘要

  • 以下内容取自原文摘要部分:
  • 基于代理者策略行为精确模型设计的激励机制更加可能诱导出想要的结果。一个正在发展的领域文献表明:在很多情况下(无论线上线下)人们都不会像标准经济学代理者那样行动。在这些环境中,代理者的差异对于最优竞赛机制设计可能产生怎样的影响呢?本文中,我们在针对简单代理者的最优竞赛设计背景下探究这个问题,也就是说代理者只思考是否参与某个系统,而不思考提供的输入。具体来说,考虑一个竞赛,其中 n n n位潜在参赛者伴随着 ( q i , c i ) (q_i,c_i) (qi,ci),选择参与并且提交分数 q i q_i qi与代价 c i c_i ci或者选择不参与来最大化收益。负责人如何在 n n n个排位中分配总奖励 V V V以最大化某个递增的竞赛引导出的分数函数在如此定义的简单代理者中。
  • 我们首先解决这个问题通过设置所有代理者拥有相同的参与代价 c i = c c_i=c ci=c。这里,最大化递增的诱导贡献函数的竞赛总是一个简单竞赛,给排名靠前的参赛者以相同的奖励。这跟策略努力决策下类似模型的最优竞赛结构截然不同,最优竞赛要么是“赢者通吃”的竞赛要么很大可能奖励不平等,这取决于代理者代价函数的曲率。我们接下来通过异质代价函数来解决这个问题,其中代理者的类型存在两个维度 ( q i , c i ) (q_i,c_i) (qi,ci),极大复杂化了均衡的计算。伴随着异质代价函数,最优竞赛取决于最大化的目标函数,这里我们的主要结果是,当负责人的目标函数是最大化诱导贡献时,“赢者通吃”竞赛是最优竞赛的3级近似。该结果的证明依赖于“子均衡”引理,该引理建立在均衡中诱导贡献的分布与子均衡(对于参与者来说的最优策略组合)之间的统计领域关系。均衡与子均衡之间的关系可能未来会有更大的研究价值。
  • 关键词:Contest Design、Crowdsourcing、Mechanism Design、User-Generated Content
  • 我的总结:本文关注于针对简单代理者的最优竞赛设计,简单代理者是指决策在参与与不参与之间二选一。在两种模型分类下研究,在同质代价函数的设定下得出了最优竞赛的结构,在异质代价函数的设定下得出了近似性质的结果。

三、背景引言

  • 大量线上系统设计竞赛,比如:社会计算、众包平台、匹配市场、排名与推荐系统等等。而竞赛简单来说,就是代理者执行决策决定系统的输入与输出。除了传统、实体竞赛发展广泛以外,近些年来线上竞赛兴起
  • 当模型具体、目标明确时,基于经济学的竞赛设计往往是更有效的。然而近期研究发现,在很多情况设定下人们并不会像标准经济学代理者一样执行决策,我们将这类“不标准”的代理者称为简单代理者(Simple Agent),潜在参与者们针对是否参与竞赛制定策略,而不针对所提交的品质指定策略
  • 经济学竞赛领域已经有了庞大的研究基础。根源性工作来自于Lazear and Rozen[1981],主张竞赛(排名锦标赛)可以作为一个有效的机制去激励策略性代理者产生努力。最优竞赛设计的问题(如何分配奖项以诱导最理想的结果)已经在多种设定下被研究,包括异质/同质参赛者、针对奖项的风险中性/厌恶偏好、多种信息模型与结果观测模型以及负责人的多种目标与限制条件
  • 针对最优竞赛设计,目前的大量研究成果都集中于参赛者做出策略努力选择,而针对本文的简单代理者模型,相关研究工作较少。

四、核心模型

  • Agents)共有 n n n位潜在参赛者。参赛者都是简单的(simple),意味着参赛者只针对是否参与竞赛制定策略,而不会针对调整努力的多少来指定策略。也就是说,参赛者只有两个选择:参与并贡献一定努力承担一定代价、不参与。每位参赛者的特性表现在贡献-代价对 ( q i , c i ) (q_i,c_i) (qi,ci),具体来说参赛者 i i i参与竞赛产生既定的贡献 q i q_i qi并承担代价 c i c_i ci。设定每位参赛者的 ( q i , c i ) (q_i,c_i) (qi,ci)都独立同分布于联合分布 F ( q , c ) F(q,c) F(q,c)(所有人已知)。
  • Contestsrank-order竞赛表示为 M ( v 1 , . . . , v n ) M(v_1,...,v_n) M(v1,...,vn),其中 v i v_i vi表示给排名第 i i i个参赛者分配的奖项价值。本文的竞赛专指单调、非负的竞赛,也就是说排名越高奖励越高并且奖励都非负。
  • Utility)参赛者都是风险中性的。如果参赛者选择参与,其效用为期望奖项与代价的差值;如果选择不参与,那么效用为 0 0 0
  • Strategy)纯策略 π i ( q i , c i ) \pi_i(q_i,c_i) πi(qi,ci)表示参赛者 i i i考虑自身特性做出决策, = 1 =1 =1表示参与反之表示不参与。纯策略组合为 ( π 1 , . . . , π n ) (\pi_1,...,\pi_n) (π1,...,πn)。对称策略组合为 π i = π , ∀ i ∈ [ n ] \pi_i=\pi,\forall i\in[n] πi=π,i[n],表示为 π ⃗ \vec{\pi} π 。参赛者通过观察负责人宣布的竞赛 M ( v 1 , . . . , v n ) M(v_1,...,v_n) M(v1,...,vn)、其他参赛者的策略 π − i ⃗ \vec{\pi_{-i}} πi 、对于分布 F F F的认知以及潜在参赛者人数 n n n做出决策。
  • Equilibrium)我们主要考虑对称纯策略组合,也就是说相同的情况下,不同参赛者会做出相同决策,采用相同策略 π \pi π的参赛者集合定义为 S ( π ) S(\pi) S(π)。纯策略均衡是指,对于参与者来说不参与不会带来效用提升,对于非参与者来说参与不会带来效用提升。
  • Objectives and Constraints)每名参与竞赛的参赛者产生贡献 q i q_i qi,不参与的产生贡献为 0 0 0 q = ( q 1 , . . . , q n ) q=(q_1,...,q_n) q=(q1,...,qn)表示贡献组合。目标函数 f f f以贡献组合 p p p作为输入,并且是递增的,也就是说贡献越大负责人目标函数对应越大。限制条件有 ∑ j = 1 n v i ≤ V \sum_{j=1}^n v_i \le V j=1nviV,也就说奖项总和要小于等于预算,允许有预算残余。

五、分析过程

5.1 同质代价函数
  • 同质代价函数是指所有参赛者的代价函数相同,参赛者特性服从的分布简化为 F ( q ) F(q) F(q)
  • 接下来介绍本部分分析的核心内容—— c M ( p ) c_M(p) cM(p)函数。该函数代表参赛者 i i i决定参与竞赛 M M M获得的期望奖励,其中 p p p表示每位参赛者以 p p p的概率参与竞赛并且位于该参赛者之前, p p p与参赛者的类型以及其他参赛者的决策有关,故 p = p ( q i , π − i ) p=p(q_i,\pi_{-i}) p=p(qi,πi)
    c M ( p ) = ∑ j = 1 n v j ( n − 1 j − 1 ) p j − 1 ( 1 − p ) n − j c_M(p)=\sum_{j=1}^nv_j\dbinom{n-1}{j-1}p^{j-1}(1-p)^{n-j} cM(p)=j=1nvj(j1n1)pj1(1p)nj
  • 观点1:对于任何单调的排序机制 M M M,存在一个门限策略中的对称均衡,该均衡中每位拥有能力值 q i ≥ q ∗ q_i\ge q^* qiq的潜在参赛者会参与,相反则不参与。均衡门限 q ∗ q^* q满足如下条件: c M ( 1 − F ( q ∗ ) ) = c c_M(1-F(q^*))=c cM(1F(q))=c。这是竞赛机制 M M M中唯一的对称均衡
  • 关于同质代价函数,本文的结论是:最优竞赛是简单的,对于每一对总奖励 V V V与参与代价 c c c的组合来说,存在一个最优竞赛,该竞赛针对前 j j j位参赛者奖励 V / j V/j V/j,其他奖励 0 0 0
  • 将最优竞赛书写为线性规划(LP)的形式如下。
    m a x   ∑ j = 1 n v j ( n − 1 j − 1 ) p j − 1 ( 1 − p ) n − j s u b   v 1 ≥ v 2 ≥ . . . ≥ v n ≥ 0 ∑ j = 1 n v j = V max \space \sum_{j=1}^nv_j\dbinom{n-1}{j-1}p^{j-1}(1-p)^{n-j}\\ sub \space v_1\ge v_2\ge... \ge v_n\ge 0\\ \sum_{j=1}^nv_j=V max j=1nvj(j1n1)pj1(1p)njsub v1v2...vn0j=1nvj=V
  • 将最优竞赛的线性规划变换形式得。 ( w j = j ( v j − v j + 1 ) ) (w_j=j(v_j-v_{j+1})) (wj=j(vjvj+1))
    m a x w j   ∑ j = 1 n w j ( 1 j ∑ k = 1 j ( n − 1 k − 1 ) p k − 1 ( 1 − p ) n − k ) s u b   ∑ j = 1 n w j = V w j ≥ 0 , j = 1 , . . . , n max_{w_j} \space \sum_{j=1}^nw_j(\frac{1}{j}\sum_{k=1}^j\dbinom{n-1}{k-1}p^{k-1}(1-p)^{n-k})\\ sub \space \sum_{j=1}^nw_j=V\\ w_j\ge 0,j=1,...,n maxwj j=1nwj(j1k=1j(k1n1)pk1(1p)nk)sub j=1nwj=Vwj0,j=1,...,n
  • 定理3.1:对于任何一组总奖励 V V V与参与代价 c c c,存在一个最优竞赛其中向前 j j j位参赛者奖励相等奖项 V / j ∗ V/j^* V/j并且向其他人奖励 0 0 0。除了一些特殊的值 c c c,这就是唯一的最优竞赛。最优竞赛是简单竞赛,唯一需要确定的就是奖项的平分个数 j j j,一些关于 j j j的推论观点请参照原文。
5.2 任意代价函数
  • 任意代价函数,也就是潜在参赛者输出能力 q i q_i qi与代价 c i c_i ci有着某种相关性。在该设定下,并非针对所有的递增代价函数 f f f都存在着最优竞赛。因此本章节我们简化分析,只考虑最大化目标函数(也就是该竞赛中最高排名的能力作为目标值)。
  • 该设定下的均衡分析是个挑战,因此本章节中,我们将展示“赢者通吃”竞赛对于最优竞赛来说是3级近似。
  • 子均衡的含义。子均衡是指某个策略组合下,所有潜在参赛者的效用都非负,也就是说符合个体理性。子均衡是一个比均衡更弱的定义,在子均衡中,选择参与的人不会有获利的策略偏移,而选择不参与的人可能存在策略偏移。

六、本文总结

  • 本文中,我们通过简单代理者的最优竞赛设计这一特定问题,来研究非标准行为代理者对于经济环境中最优竞赛设计的影响。对于同质代价函数的设定,我们提出了最优竞赛的结构。对于异质代价函数的设定,一个“赢者通吃”的竞赛可能并不是最优的,但接近于最优。另外目标函数的选择也决定了该设定下有没有最优竞赛以及最优竞赛的结构。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值