All-Pay Contests 论文问题思考与解答(博弈论+机制设计)

1.啥叫Sunk investment?

  • 直译为沉默投资,更常见的说法是投资中的沉默成本。沉默成本是指过去所付出的时间、金钱等成本,可能对当下决策不会造成任何影响。简单理解为“过去所做的毫无用处的付出”,给人一种鸡肋的感觉,食之无味弃之可惜。本文中指全支付竞赛中,未获胜者也需支付自己的竞价,对参赛者来说是沉默成本。

2.啥叫Rent-Seeking,Lobbying?

  • 直译为寻租行为与游说行为。均为经济学专业名词,从本文的角度来看,我的理解是:竞赛中公司对于垄断地位的不合理竞争。游说行为则可以类比,总体竞选中候选人花费人力物力财力进行宣讲的活动,提高自身竞争力,打压对手竞争力,来实现对垄断资源的掌控。

3.啥叫Irreversible Investments?

4.代价函数严格有序有何作用?

  • 参赛者的代价高低代表了其出价能力的高低,换句话说代价代表了竞争力。如果代价函数严格有序,那么参赛者们便可以对自己的竞争力做出评估,有足够竞争力的参赛者选择参与均衡,反之选择不参与。如果代价函数无序,那么参赛者无法实现竞争力的定位,便可能出现盲目参与的情况。

5.啥叫Rent Dissipation与Comparative statics?

6.如何理解1.1部分的举例?

  • 该例子不是一个标准的全支付竞赛。
  • 基本情况:三位风险中性的参赛者竞争一个奖项。参赛者选定投资金额,生成对应分数,分高者得,奖项估值固定且相同均为1,所支付代价由分数决定,并且代价函数存在异质性。设计者付出奖项价值,收获参赛者产生的分数(贡献),设计者角度衡量竞赛的一个重要指标是分数总和。(参赛者1,2,3分别称为P1,P2,P3)
  • 代价函数的异质性:P1,P2后半段分数-代价曲线斜率较低,也就是边际代价较低。P3具有初始优势,前半段斜率近似为0,可以理解为初始分数更高(P1,P2初始分数为0)。代价函数大小关系不确定因此无序,无序导致本文部分观点有所违背。
    在这里插入图片描述
  • 均衡分析:P2,P3不会选择大于1的分数,因为会让他们无利可图。P1选择 1 + ϵ 1+\epsilon 1+ϵ的分数必胜,收益为 1 − K − ϵ 1-K-\epsilon 1Kϵ(该值为P1期望收益下界)。P1选择 1 + ϵ 1+\epsilon 1+ϵ无法构成均衡,因为:P2,P3明知必败且要支付分数对应的代价,就选择低于1的分数甚至为0;此情况下,P1选择更低的分数即可获胜。因此无法满足此状态下,彼此都是其余人的最优响应。P1在均衡中无法使用纯策略,必须使用混合策略。混合策略带给P1的期望收益更高(因为100%选择 1 + ϵ 1+\epsilon 1+ϵ的纯策略是收益下界)。
  • 定理1表明:P1的期望收益为1-K,P2,P3的期望收益为0。对于设计者来说,竞赛所累积的分数总和为 K + 0 + 0 = K K+0+0=K K+0+0=K
  • 定理2表明:P1,P2一定参与,P3按理说不参与,但是本例代价函数无序,P3虽然处于劣势但独有初始优势,使其可能以较低分数获得正收益,虽然其期望收益为0。
  • 竞赛变种:将P3的边际代价该为0,也就是说P3有极大的初始优势。在均衡中P1,P2不出价,P3降低出价直至不出价,最终无人出价,即便奖品有价值。
  • 竞赛结构改变:在只有P1,P2的竞赛中加入P3,不影响P1,P2的期望收益也不影响分数总和,但可能会改变个人支出。增加奖项个数降低奖项价值都会使得参赛者的情况更好。

7.有几种打破Relevent Tie的方法?

8.啥叫Seperable Contests?

  • 在未引入可分离竞赛定义之前,胜利代价与失败代价彼此独立。引入可分离竞赛之后,代价与输赢状态无关,只与所选择分数有关。全支付竞赛是指无论输赢参赛者都需要支付自己的全部出价,因此全支付竞赛一定是可分离竞赛。

10.如何理解四个关键定义的含义?

  • 参赛者的reach:是指当获胜效用为0,也就是代价等于奖项估值的最大分数(最大是为了防止代价函数不单调)。形象说是参赛者的最高出价或者出价能力。按照reach降序排列。
  • 竞赛的marginal player:是第m+1位参赛者,可以理解为临界值,出价能力大于他的很大概率得奖,出价能力小于他的很小概率得奖。
  • 竞赛的threshold:marginal player的最高出价或出价能力。
  • 参赛者的power:以marginal player最高出价为分数时的获奖效用。也就是参赛者在threshold处的获利能力,特殊的是marginal player的power一定为0。对于 N W N_W NW中参赛者来说,power= V i − V m + 1 V_i-V_{m+1} ViVm+1,可以将power理解为比marginal player更想要奖项的程度。

11.如何理解Generic Conditions?

  • Power Condition:只有marginal player的power为0。(说明marginal player是唯一的,也就是不存在与marginal player相等reach的参赛者)
  • Cost Condition:marginal player在 [ a m + 1 , T ) [a_{m+1},T) [am+1,T)的分数选择区间内胜利估值递减。(奖项价值固定的话就是代价函数递增)
  • m个奖项的全支付竞赛一定符合Generic Conditions。全支付竞赛代价函数等于其分数,故所有参赛者代价函数相同且递增,符合Cost Condition。要想符合Power Condition,只需要marginal player奖项估值与其他人不同即可。其他竞赛以上两条件即使本身不满足,也可以微调满足。
  • N W = { 1 , . . . , m } N_W=\{1,...,m\} NW={1,...,m}称为胜利参赛者拥有正值powers。 N L = { m + 1 , . . . , n } N_L=\{m+1,...,n\} NL={m+1,...,n}称为失败参赛者拥有0或者负值powers。

12.如何理解定理1?

  • 首先定理1是在Generic Condition满足的条件下获得的,是描述全支付竞赛均衡收益特征。定理1内容:在标准竞赛的任意均衡中,每位参赛者的期望收益都等于其power与0的较大值。(说明 N W N_W NW中参赛者期望收益为其power, N L N_L NL中参赛者期望收益为0。)
  • 定理1由四个引理以及Power Condition证明。
    Least Lemma表明:所有参赛者在任意均衡中的期望收益都至少为 m a x { w i , 0 } max\{w_i,0\} max{wi,0}
    Tie Lemma表明:如果有两个及以上参赛者为分数x分配了正概率,那么他们最终选择x要么全胜要么全负。
    Zero Lemma表明:至少n-m位参赛者已知必败做出最优响应,他们的期望收益小于等于0。
    Threshold Lemma表明: N W N_W NW中参赛者最优响应为大于等于T的分数,从而获得期望收益至多为其power。
  • Least Lemma+Zero Lemma+Power Condition得到 N L N_L NL中参赛者期望收益为0。Least Lemma+Threshold Lemma+Power Condition得到 N W N_W NW中参赛者期望收益为其Power。从而得证。
  • 推论1提出:所有全支付竞赛都拥有一个纳什均衡。因此只要全支付竞赛符合标准条件,就能够根据定理1分析参赛者期望收益,均衡一定存在,且无关均衡的唯一性。

13.定理1的证明过程?

  • 选择一个标准竞赛以及一个竞赛的均衡 G = ( G 1 , . . . , G N ) G=(G_1,...,G_N) G=(G1,...,GN)。(任意标准竞赛均衡存在+任意竞赛的任意均衡满足定理1 → \rightarrow 定理1得以证明
  • LEAST LEMMA:参赛者在任意均衡 G G G中的期望收益至少等于其power与0之间的较大值。
    证明:初始分数的存在使得每位参赛者的收益都大于等于0(输了代价为0且有可能获胜)。参赛者划分为 N W , N L N_W,N_L NW,NL两部分, N L N_L NL中参赛者power小于0故已满足引理。 N W N_W NW中任意参赛者选择分数 m a x { a i , T + ϵ } , ϵ > 0 max\{a_i,T+\epsilon\},\epsilon>0 max{ai,T+ϵ},ϵ>0都可以打败 N L N_L NL中所有 N − m N-m Nm位参赛者而获胜( N L N_L NL中参赛者reach<T,因此不会出价大于等于T)。由此可得:(参赛者i以最高的分数获胜,伴随着最大的代价,因此是期望收益的下界
    u i ≥ v i ( m a x { a i , T + ϵ } ) → ϵ → 0 v i ( m a x { a i , T } ) = w i u_i\ge v_i(max\{a_i,T+\epsilon\})\rightarrow_{\epsilon\rightarrow0}v_i(max\{a_i,T\})=w_i uivi(max{ai,T+ϵ})ϵ0vi(max{ai,T})=wi
    由上式可得 N W N_W NW中参赛则期望收益大于等于其power( N W N_W NW中参赛则的power>0)。综上,LEAST LEMMA得证。
    作用:证明了任意均衡中所有参赛者期望收益都至少为power与0之间的较大值(定理1的下界部分)。
  • TIE LEMMA:假设在均衡 G G G中两个以上的参赛者为分数 x x x分配了概率,也就是说以严格正值概率选择 x x x。那么为分数 x x x分配了概率的参赛者们如果选择 x x x要么一定一起获胜要么一定一起失败。
    证明:为分数 x x x分配了概率的参赛者集合为 N ′ , ∣ N ′ ∣ ≥ 2 N',|N'|\ge 2 N,N2。事件 N ′ N' N中所有参赛者选择分数 x x x定义为 E E E x x x为获奖分数并且 x x x出现同分数的事件定义为 D D D m ′ m' m个奖项分配给 N ′ N' N ∣ N ′ ∣ |N'| N个参赛者,且 1 ≤ m ′ < ∣ N ′ ∣ 1\le m' <|N'| 1m<N)。假设 D D D有严格正值概率,在 D D D的基础上,至少有一位参赛者 i ∈ N ′ i\in N' iN可以通过选择略大于 x x x的分数从而获胜。因此事件 D D D并不满足最优响应,换句话说任意均衡中不可能出现事件 D D D。因此 P ( E ) = P ( E L ) + P ( E W ) P(E)=P(E^L)+P(E^W) P(E)=P(EL)+P(EW),其中, P ( E L ) P(E^L) P(EL)表示出现事件 E E E N ′ N' N中所有参赛者全部失败, P ( E W ) P(E^W) P(EW)表示出现事件 E E E N ′ N' N中所有参赛者全部获胜, D D D事件不存在均衡中,因此无第三种部分获胜部分失败的情况。因此在 E E E的基础上,要么 E W E^W EW成立要么 E L E^L EL成立。TIE LEMMA得证。
    作用:均衡中可能会有多位参赛者为某个分数附以概率。TIE LEMMA消除了那些平分数参赛者中部分获胜的情况。均衡中无上述情况有助于确定哪些参赛者的期望收益为0。
  • ZERO LEMMA:在均衡 G G G中,至少有 n − m n-m nm位参赛者针对于他们获胜概率等于0或者接近于0的情况做出最优响应。这些参赛者期望收益最大是0。
    证明:用 J J J表示某个 m + 1 m+1 m+1位参赛者的集合。用 S ~ \tilde{S} S~表示 J J J中参赛者最优响应集合的联合。用 s i n f s_{inf} sinf表示 S ~ \tilde{S} S~的下确界。一共有三种情况:(1) J J J有两个及以上的参赛者针对分数 s i n f s_{inf} sinf附以正值概率。(2) J J J只有一个的参赛者针对分数 s i n f s_{inf} sinf附以正值概率。(3) J J J没有参赛者针对分数 s i n f s_{inf} sinf附以正值概率。
    情况(1):用 N ′ N' N表示 J J J中针对分数 s i n f s_{inf} sinf附以正值概率的参赛者。对于 N ′ N' N中每位参赛者来说不可能成立 P i ( s i n f ) = 1 P_i(s_{inf})=1 Pi(sinf)=1,由此根据TIE LEMMA得到:对于 N ′ N' N中每位参赛者来说一定成立 P i ( s i n f ) = 0 P_i(s_{inf})=0 Pi(sinf)=0
    情况(2):用 i i i来表示 J J J中唯一一个针对分数 s i n f s_{inf} sinf附以正值概率的参赛者。 P i ( s i n f ) = 0 P_i(s_{inf})=0 Pi(sinf)=0一定成立(因为 J J J中其余m位参赛者选择分数一定大于 s i n f s_{inf} sinf)。由此(1)(2)可得:任意m+1位参赛者的集合 J J J中,可能选择分数下确界的参赛者一定成立 P i ( s i n f ) = 0 P_i(s_{inf})=0 Pi(sinf)=0,并且针对获胜概率为0的情况选择分数 s i n f s_{inf} sinf也是其最优响应。
    情况(3):根据下确界 s i n f s_{inf} sinf的定义,一定存在某位参赛者i其最优响应接近于 s i n f s_{inf} sinf。当 n n n趋向于无穷时, P i ( x n ) P_i(x_n) Pi(xn)接近于0。
    因为 J J J是任意一个包含m+1位参赛者的集合,因此任意均衡中至少有n-m位参赛者是针对其获胜概率等于0或接近于0做出的最优响应。获胜概率等于0或接近于0,那么期望收益至多为0。
    作用 N L N_L NL n − m n-m nm位参赛者的任意均衡下期望收益为0。
  • THRESHOLD LEMMA N W N_W NW中的参赛者最优响应是接近或者超过threshold,因此期望收益最多为其power值。
    证明:对于 N L \ { m + 1 } N_L\backslash \{m+1\} NL\{m+1}中的参赛者来说,其最优响应的上确界为 s s u p < T s_{sup}<T ssup<T。为了证明 N W N_W NW中每位参赛者都为接近或者超过threshold的分数附以了概率,使用反证法。假设存在一位 N W N_W NW中参赛者,没有为接近或者超过threshold的分数附以概率。那么marginal player可以纯策略在范围 ( m a x { a m + 1 , s } , T ) (max\{a_{m+1},s\},T) (max{am+1,s},T)中选择分数从而百分百赢得比赛。此时marginal player期望收益为正,与上面结论相违背。(证明 N W N_W NW中参赛者的最优响应
    N W N_W NW中任选一位参赛者 i i i。其最优响应 x n x_n xn接近于某个 z i ≥ T z_i\ge T ziT。根据LEAST LEMMA, v i ( x n ) > 0 v_i(x_n)>0 vi(xn)>0。根据 v i v_i vi的连续性,我们可以得到:(证明 N W N_W NW中参赛者的期望收益上界
    u i = u i ( x n ) = P i ( x n ) v i ( x n ) − ( 1 − P i ( x n ) ) c i ( x n ) ≤ v i ( x n ) → x n → z i v i ( z i ) ≤ v i ( T ) = w i u_i=u_i(x_n)=P_i(x_n)v_i(x_n)-(1-P_i(x_n))c_i(x_n)\le v_i(x_n)\\ \rightarrow_{x_n\rightarrow z_i}v_i(z_i)\le v_i(T)=w_i ui=ui(xn)=Pi(xn)vi(xn)(1Pi(xn))ci(xn)vi(xn)xnzivi(zi)vi(T)=wi
    作用:证明了 N W N_W NW中参赛者期望收益的上界为power。
  • 综合以上引理及其证明。LEAST LEMMA与THRESHOLD LEMMA共同证明了 N W N_W NW中参赛者所有均衡下期望收益等于其power。TIE LEMMA辅助证明ZERO LEMMA,从而证明了 N L N_L NL中参赛者所有均衡下期望收益等于0。(均在标准竞赛的前提下)综合上述两点,定理1得证。

13.定理2的证明过程?

  • 正常情况下,全支付竞赛所有参赛者的初始分数都是0,不存在初始优势。因此m+1以后的参赛者很少会参与。
  • 每位参赛者的伯努利效用函数 u i ( s ) = P i ( s ) u i ( a i ) − c i ( s i ) u_i(s)=P_i(s)u_i(a_i)-c_i(s_i) ui(s)=Pi(s)ui(ai)ci(si)除以 u i ( a i ) u_i(a_i) ui(ai)后并不影响均衡中所有参赛者的策略表现,因此利用所有参赛者 u i ( a i ) = 1 u_i(a_i)=1 ui(ai)=1的竞赛证明即可代表所有竞赛。(这也是为何定理2中有正则化
  • 证明方法使用反证法。选择该竞赛中的一个均衡 G G G,假设存在某位参赛者 i > m + 1 i>m+1 i>m+1满足定理2的条件并且参与到了竞赛中。即
    c m + 1 ( m a x { a m + 1 , x } ) v m + 1 ( a m + 1 ) < c i ( x ) v i ( a i )  for all  x ∈ S i v m + 1 ( m a x { a m + 1 , x } ) v m + 1 ( a m + 1 ) ≥ v i ( x ) v i ( a i )  for all  x ∈ S i \frac{c_{m+1}(max\{a_{m+1},x\})}{v_{m+1}(a_{m+1})}<\frac{c_i(x)}{v_i(a_i)}\text{ for all $x\in S_i$}\\ \frac{v_{m+1}(max\{a_{m+1},x\})}{v_{m+1}(a_{m+1})}\ge\frac{v_i(x)}{v_i(a_i)}\text{ for all $x\in S_i$}\\ vm+1(am+1)cm+1(max{am+1,x})<vi(ai)ci(x) for all xSivm+1(am+1)vm+1(max{am+1,x})vi(ai)vi(x) for all xSi
  • t i = i n f { x : G i ( x ) = 1 } < T t_i=inf\{x:G_i(x)=1\}<T ti=inf{x:Gi(x)=1}<T t i t_i ti可理解为参赛者 i i i混合策略中所选择分数的最大值, t i ≤ r i < T t_i\le r_i<T tiri<T。令 t i ~ = m a x { a m + 1 , t i } < T \tilde{t_i}=max\{a_{m+1},t_i\}<T ti~=max{am+1,ti}<T,那么 P i ( t i ) < 1 P_i(t_i)<1 Pi(ti)<1由Threshold引理证明过程可得, N W N_W NW中m位参赛者选择分数接近或者超过threshold,参赛者 i i i最高分数才为 t i < T t_i<T ti<T,因此不可能必胜),并且对于任意 δ > 0 : P m + 1 ( t i ~ + δ ) ≥ P i ( t i ) \delta>0:P_{m+1}(\tilde{t_i}+\delta)\ge P_i(t_i) δ>0:Pm+1(ti~+δ)Pi(ti) t i ~ + δ > t i \tilde{t_i}+\delta>t_i ti~+δ>ti,在奖项估值相同为1且代价函数递增的情况下,分数越高获奖概率越大,也称为竞赛的单调性)。因此对于任意 δ > 0 \delta>0 δ>0使得 t i ~ + δ < r m + 1 = T \tilde{t_i}+\delta<r_{m+1}=T ti~+δ<rm+1=T我们有:
    v m + 1 ( t i ~ + δ ) > 0 ≥ − c m + 1 ( t i ~ + δ ) ) v_{m+1}(\tilde{t_i}+\delta)>0\ge -c_{m+1}(\tilde{t_i}+\delta)) vm+1(ti~+δ)>0cm+1(ti~+δ))
    上式的含义是,参赛者m+1选择分数 t i ~ + δ \tilde{t_i}+\delta ti~+δ时代价函数大于等于0且获胜效用大于0。
  • 我们可以得到:
    u m + 1 ≥ P m + 1 ( t i ~ + δ ) v m + 1 ( t i ~ + δ ) − ( 1 − P m + 1 ( t i ~ + δ ) ) c m + 1 ( t i ~ + δ ) ≥ P i ( t i ) v m + 1 ( t i ~ + δ ) − ( 1 − P i ( t i ) ) c m + 1 ( t i ~ + δ ) (根据 P m + 1 ( t i ~ + δ ) ≥ P i ( t i ) ) u_{m+1}\ge P_{m+1}(\tilde{t_i}+\delta)v_{m+1}(\tilde{t_i}+\delta)-(1-P_{m+1}(\tilde{t_i}+\delta))c_{m+1}(\tilde{t_i}+\delta)\\ \ge P_i(t_i)v_{m+1}(\tilde{t_i}+\delta)-(1-P_i(t_i))c_{m+1}(\tilde{t_i}+\delta)\\ \text{(根据$P_{m+1}(\tilde{t_i}+\delta)\ge P_i(t_i)$)} um+1Pm+1(ti~+δ)vm+1(ti~+δ)(1Pm+1(ti~+δ))cm+1(ti~+δ)Pi(ti)vm+1(ti~+δ)(1Pi(ti))cm+1(ti~+δ)(根据Pm+1(ti~+δ)Pi(ti))
  • 根据定理2中的定义可得, c i ( t i ) > c m + 1 ( t i ~ + δ ) , v m + 1 ( t i ~ + δ ) ≥ v i ( t i ) c_i(t_i)>c_{m+1}(\tilde{t_i}+\delta),v_{m+1}(\tilde{t_i}+\delta)\ge v_i(t_i) ci(ti)>cm+1(ti~+δ),vm+1(ti~+δ)vi(ti),由此可得:
    P i ( t i ) v m + 1 ( t i ~ + δ ) − ( 1 − P i ( t i ) ) c m + 1 ( t i ~ + δ ) > P i ( t i ) v i ( t i ) − ( 1 − P i ( t i ) ) c i ( t i ) = u i ( t i ) ≥ 0 P_i(t_i)v_{m+1}(\tilde{t_i}+\delta)-(1-P_i(t_i))c_{m+1}(\tilde{t_i}+\delta)\\ \\>P_i(t_i)v_i(t_i)-(1-P_i(t_i))c_i(t_i)=u_i(t_i)\ge 0 Pi(ti)vm+1(ti~+δ)(1Pi(ti))cm+1(ti~+δ)>Pi(ti)vi(ti)(1Pi(ti))ci(ti)=ui(ti)0
  • 由此可得 u m + 1 > u i ( t i ) ≥ 0 u_{m+1}>u_i(t_i)\ge 0 um+1>ui(ti)0,即 u m + 1 > 0 u_{m+1}>0 um+1>0这有违定理1。(定理1表明 u m + 1 = 0 u_{m+1}=0 um+1=0)根据反证法可得,定理2成立。

14.均衡存在性(Corollary 1)如何证明?

  • 推论1:所有的全支付竞赛中都存在均衡。
  • 考虑一个竞赛 C C C与一个受限的竞赛 C ′ C' C,其中每位参赛者选择分数在 S i ′ = [ a i , K ] , K = m a x i ∈ N r i < ∞ S_i'=[a_i,K],K=max_{i\in N}r_i<\infty Si=[ai,K],K=maxiNri<范围内。(正常竞赛每位参赛者的分数选择范围是 [ a i , ∞ ) [a_i,\infty) [ai,))任何 C ′ C' C中的均衡都是 C C C中的均衡(K是所有参赛者最大的reach,选择大于K的分数一定使得任何参赛者收益为负,不如选择初始分数收入为0),因此我们只要证明 C ′ C' C中一定存在均衡即可。
  • S ∗ = × i ∈ N S i ′ \ { ( s 1 , . . . , s n ) ∣ ∃ i ≠ j : s i = s j } S^*=\times _{i\in N}S_i'\backslash \{(s_1,...,s_n)|\exists i\neq j:s_i=s_j\} S=×iNSi\{(s1,...,sn)i=j:si=sj},换句话说 S ∗ S^* S是所有参赛者备选分数组合然后去掉存在相同分数选择的情况。根据Simon and Zame的研究成果,存在某种打破平局规则,从而使得 C ′ C' C有一个混合策略均衡 G G G。将应用了该种打破平局规则的竞赛表示为 C ~ \tilde{C} C~,均衡 G G G中参赛者的收益为 u i ~ \tilde{u_i} ui~。我们只需证明竞赛 C ~ \tilde{C} C~中的均衡 G G G也是竞赛 C ′ C' C的均衡即可。换句话说,只需证明在 C ′ C' C G G G的混合策略对每位参赛者来说都是最优响应即可。
  • 证明分两步骤进行。第一步证明在竞赛 C ′ C' C中按照均衡 G G G的混合策略决策,参赛者的效用等于 u i ~ \tilde{u_i} ui~。第二步证明不存在其他分数选择使参赛者获得相较于 u i ~ \tilde{u_i} ui~的更高收益。综上 G G G中混合策略在竞赛 C ′ C' C中也是最优响应,即 G G G也是竞赛 C ′ C' C的均衡。从而证明了 C ′ C' C中一定存在均衡,从而得到任意全支付竞赛中都存在均衡。

14.何为Revenue Equivalence Techniques?

15.何为Conditional or Unconditional Investment?、

16.何为Rent Dissipation?

17.详细理解非标准化竞赛的两个例子?

  • 例子1通过打破Power条件从而不满足标准竞赛下的收益特征。
  • 例子1中计算可得参赛者1,2的reach分别是 r 1 = 1 , r 2 = 1 r_1=1,r_2=1 r1=1,r2=1,无论 L L L值是多少,一定成立 T = 1 T=1 T=1。那么参赛者1,2的power分别是 w 1 = 0 , w 2 = 0 w_1=0,w_2=0 w1=0,w2=0,存在两个参赛者power为0,故不满足Power条件。
  • 文章中给出了针对此代价函数的均衡。那么均衡是如何凑得的?均衡是如何证明的?该均衡可能看起来比较稳固,但是只要轻微修改参赛者1,2的估值即可使得该竞赛变为标准竞赛,并打破现有平衡,从而定理1得到满足。某条件下,参赛者1得收益可能非常接近于其胜利估值,从而应征了本章节的结论。
  • 例子2通过打破Cost条件从而不满足标准竞赛下的收益特征。
  • 例子2中计算可得参赛者1,2的reach分别是 r 1 = 1 b > 1 , r 2 = 1 r_1=\frac{1}{b}>1,r_2=1 r1=b1>1,r2=1。竞赛的threshold为 T = 1 T=1 T=1。从而可得参赛者1,2的power分别是 w 1 = 1 − b > 0 , w 2 = 0 w_1=1-b>0,w_2=0 w1=1b>0,w2=0。但是对于参赛者2来说,最大值1对应的区间是 [ d , 1 ] [d,1] [d,1],因此并不成立Cost条件。
  • 在均衡 G G G中参赛者1得收益为 1 − b d > w 1 1-bd>w_1 1bd>w1,看来不满足标准条件的确会有违收益特征。某条件下,参赛者1得收益可能非常接近于其胜利估值,从而应证了本章节的结论。并且均衡 G ~ \tilde{G} G~满足:所有参赛者收益等于其power。从而应证了本章节的引理2。

17.竞赛结构的改变带来的影响?

  • 使用本文的核心成果定理1、2分析。
  • 加入参赛者:不会降低threshold,因此使得参赛者们的情况更糟糕。
  • 加入奖项:使得参赛者m+2成为marginal player,降低了threshold使得现有参赛者情况更好。
  • 提高奖项价值:提高了threshold使得参赛者情况更糟糕。
  • 以上三点有助于未来对于最优竞赛设计的研究工作。

18.何为inf下确界?

  • sup为上确界,inf为下确界,min为最小值,max为最大值。一个函数可能不存在min或者max,但一定会存在inf与sup。

13.全文行文逻辑?

  • 本文研究的核心在于全支付竞赛。全支付竞赛因其本质一定是可分离竞赛,从而得到了全支付竞赛效用函数的一般形式。本文提出的定理1、2是在满足标准化条件下,而全支付竞赛因其本质一定符合Cost Condition,稍加设定即可符合Power Condition,并且其他不符合的竞赛也容易通过微调符合。
  • 全支付竞赛的特殊性)由于全支付竞赛的本质,代价函数固定且等于 c i ( s i ) = s i c_i(s_i)=s_i ci(si)=si。因此参赛者的特异性体现在奖项估值 V i V_i Vi上,四大定义也都由 V i V_i Vi决定。并且全支付竞赛所有参赛者的初始分数都是0。
  • 本文的核心成果是定理1、2,这两个定理都是针对于标准竞赛提出的。标准竞赛与全支付竞赛之间无包含、被包含关系,只是全支付竞赛的设定比较接近于标准竞赛,因此微调从而使用标准竞赛的规律来分析全支付竞赛。核心思想是:在研究竞赛时,参赛者的reach与power是需要计算的关键变量。
  • 定理1表明,满足标准化条件的全支付竞赛,在所有均衡中,相同参赛者的期望收益都相同,根据设计者收入=奖项总价值-参赛者总效用得,设计者得期望收入也是相同的。因此我们就不需要考虑均衡是否唯一,因为所有均衡下对于参赛者与设计者来说收益均相同。这也就方便了设计者进一步操控竞赛,本文最后也提出了三种竞赛结构的改变对于参赛者、设计者的影响。因此本文核心在于简化了全支付竞赛的分析,在某个不是特别强的特殊条件下,使用reach、power等工具就可以分析全支付竞赛中参赛者的收益与参与情况以及设计者的收益,从而为最优竞赛设计提出参考。
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值