All-Pay Contests 论文定理推导(博弈论+机制设计)

  • 本文针对于全支付竞赛(准确来说是标准竞赛)提出两大结论:Theorem 1有关标准竞赛中参赛者的均衡收益情况;Theorem 2有关标准竞赛中参赛者的均衡参与情况。 Theorem1、2需依赖于均衡存在性定理(原文中Corollary 1)。因此本文证明大体分为三部分。
  • 三部分的证明之间存在联系。Corollary 1证明独立,是Theorem1,2成立的基础。Theorem 1证明依赖于Generic Condition。Theorem 2证明依赖于Generic Condition与Theorem 1。

一、Theorem 1 证明过程

  • 总体来说:Theorem 1的证明分为四部分,提出四个Lemma并分别证明,四个Lemma组合可推出Theorem 1的内容。(基于Generic Condition+均衡存在性)
  • Theorem 1内容:在标准竞赛的任意均衡中,每个参赛者的期望收益都等于其power值与0之间的较大值。( N W N_W NW中参赛者期望收益为power, N L N_L NL中参赛者期望收益为0。
  • 选择一个标准竞赛以及一个竞赛的均衡 G = ( G 1 , . . . , G N ) G=(G_1,...,G_N) G=(G1,...,GN)。(任意标准竞赛均衡存在+任意竞赛的任意均衡满足定理1 → \rightarrow 定理1得以证明

  • LEAST LEMMA:参赛者在任意均衡 G G G中的期望收益至少等于其power与0之间的较大值。
    证明:初始分数的存在使得每位参赛者的收益都大于等于0( N L N_L NL中参赛者 i i i选择分数 s i ∈ [ a i , r i ) s_i\in[a_i,r_i) si[ai,ri),如果获胜那么期望收益为正,如果失败那么不如选择初始分数保证收益为0)。参赛者划分为 N W , N L N_W,N_L NW,NL两部分, N L N_L NL中参赛者power小于0故已满足引理。 N W N_W NW中任意参赛者选择分数 m a x { a i , T + ϵ } , ϵ > 0 max\{a_i,T+\epsilon\},\epsilon>0 max{ai,T+ϵ},ϵ>0都可以打败 N L N_L NL中所有 n − m n-m nm位参赛者而获胜( N L N_L NL中参赛者reach<T,因此不会出价大于等于T)。由此可得:(参赛者 i i i百分百选择最高的分数获胜,伴随着最大的代价,因此是期望收益的下界
    u i ≥ v i ( m a x { a i , T + ϵ } ) → ϵ → 0 v i ( m a x { a i , T } ) = w i u_i\ge v_i(max\{a_i,T+\epsilon\})\rightarrow_{\epsilon\rightarrow0}v_i(max\{a_i,T\})=w_i uivi(max{ai,T+ϵ})ϵ0vi(max{ai,T})=wi
    由上式可得 N W N_W NW中参赛则期望收益大于等于其power( N W N_W NW中参赛则的power>0)。综上,LEAST LEMMA得证。
    作用:证明了任意均衡中所有参赛者期望收益都至少为power与0之间的较大值(定理1的下界部分)。

  • TIE LEMMA:假设在均衡 G G G中两个以上的参赛者为分数 x x x分配了概率,也就是说以严格正值概率选择 x x x。那么为分数 x x x分配了概率的参赛者们如果选择 x x x要么一定一起获胜要么一定一起失败。
    证明:为分数 x x x分配了概率的参赛者集合为 N ′ , ∣ N ′ ∣ ≥ 2 N',|N'|\ge 2 N,N2。事件 N ′ N' N中所有参赛者选择分数 x x x定义为 E E E x x x为获奖分数并且 x x x出现同分数的事件定义为 D D D m ′ m' m个奖项分配给 N ′ N' N ∣ N ′ ∣ |N'| N个参赛者,且 1 ≤ m ′ < ∣ N ′ ∣ 1\le m' <|N'| 1m<N)。假设 D D D有严格正值概率,在 D D D的基础上,至少有一位参赛者 i ∈ N ′ i\in N' iN可以通过选择略大于 x x x的分数从而获胜。因此事件 D D D并不满足最优响应,换句话说任意均衡中不可能出现事件 D D D。因此 P ( E ) = P ( E L ) + P ( E W ) P(E)=P(E^L)+P(E^W) P(E)=P(EL)+P(EW),其中, P ( E L ) P(E^L) P(EL)表示出现事件 E E E N ′ N' N中所有参赛者全部失败, P ( E W ) P(E^W) P(EW)表示出现事件 E E E N ′ N' N中所有参赛者全部获胜, D D D事件不存在均衡中,因此无第三种部分获胜部分失败的情况。因此在 E E E的基础上,要么 E W E^W EW成立要么 E L E^L EL成立。TIE LEMMA得证。
    作用:均衡中可能会有多位参赛者为某个分数附以概率。TIE LEMMA消除了那些平分数参赛者中部分获胜的情况。均衡中无上述情况有助于确定哪些参赛者的期望收益为0。
    该引理说的是,在均衡中不会出现平局卡在分数 x x x上,因为从结果反推的角度,平局中至少有一个参赛者可以略微提高分数从而必胜。但实际上,参赛者不会知道是否会发生平局,因此也无法做出策略调整规避掉平局的均衡?其实还是考虑博弈的过程是否会向着均衡的方向演化

  • ZERO LEMMA:在均衡 G G G中,至少有 n − m n-m nm位参赛者针对于他们获胜概率等于0或者接近于0的情况做出最优响应。这些参赛者期望收益最大是0。
    证明:用 J J J表示某个 m + 1 m+1 m+1位参赛者的集合。用 S ~ \tilde{S} S~表示 J J J中参赛者最优响应集合的联合。 s i n f s_{inf} sinf表示 S ~ \tilde{S} S~(笛卡尔积)的下确界。一共有三种情况:(1) J J J有两个及以上的参赛者针对分数 s i n f s_{inf} sinf附以正值概率。(2) J J J只有一个的参赛者针对分数 s i n f s_{inf} sinf附以正值概率。(3) J J J没有参赛者针对分数 s i n f s_{inf} sinf附以正值概率。
    情况(1):用 N ′ N' N表示 J J J中针对分数 s i n f s_{inf} sinf附以正值概率的参赛者。对于 N ′ N' N中每位参赛者来说不可能成立 P i ( s i n f ) = 1 P_i(s_{inf})=1 Pi(sinf)=1,由此根据TIE LEMMA得到:对于 N ′ N' N中每位参赛者来说一定成立 P i ( s i n f ) = 0 P_i(s_{inf})=0 Pi(sinf)=0
    情况(2):用 i i i来表示 J J J中唯一一个针对分数 s i n f s_{inf} sinf附以正值概率的参赛者。 P i ( s i n f ) = 0 P_i(s_{inf})=0 Pi(sinf)=0一定成立(因为 J J J中其余m位参赛者选择分数一定大于 s i n f s_{inf} sinf)。由此(1)(2)可得:任意m+1位参赛者的集合 J J J中,可能选择分数下确界的参赛者一定成立 P i ( s i n f ) = 0 P_i(s_{inf})=0 Pi(sinf)=0,并且针对获胜概率为0的情况选择分数 s i n f s_{inf} sinf也是其最优响应。
    情况(3):根据下确界 s i n f s_{inf} sinf的定义,一定存在某位参赛者i其最优响应 { x n } n = 1 ∞ \{x_n\}^\infty _{n=1} {xn}n=1接近于 s i n f s_{inf} sinf n n n趋向于无穷时, P i ( x n ) P_i(x_n) Pi(xn)接近于0。
    因为 J J J是任意一个包含m+1位参赛者的集合,因此任意均衡中至少有n-m位参赛者是针对其获胜概率等于0或接近于0做出的最优响应。类似鸽笼原理,假设只有n-m-1个人成立,那么存在某个m+1个人中没有人成立)获胜概率等于0或接近于0,那么期望收益至多为0。
    作用 N L N_L NL n − m n-m nm位参赛者的任意均衡下期望收益为0。(LEAST LEMMA中得到 N W N_W NW中参赛者期望收益至少为Power,那么n-m个只能是 N L N_L NL中的。

  • THRESHOLD LEMMA N W N_W NW中的参赛者最优响应是接近或者超过threshold,因此期望收益最多为其power值。
    证明:1.对于 N L \ { m + 1 } N_L\backslash \{m+1\} NL\{m+1}中的参赛者来说,其最优响应的上确界为 s s u p < T s_{sup}<T ssup<T。为了证明 N W N_W NW中每位参赛者都为接近或者超过threshold的分数附以了概率,使用反证法。假设存在一位 N W N_W NW中参赛者,没有为接近或者超过threshold的分数附以概率。那么marginal player可以纯策略在范围 ( m a x { a m + 1 , s } , T ) (max\{a_{m+1},s\},T) (max{am+1,s},T)中选择分数从而百分百赢得比赛。此时marginal player期望收益为正,与上面结论相违背。(证明 N W N_W NW中参赛者的最优响应
    2.在 N W N_W NW中任选一位参赛者 i i i。其最优响应 { x n } n = 1 ∞ \{x_n\}^\infty _{n=1} {xn}n=1接近于某个 z i ≥ T z_i\ge T ziT。根据LEAST LEMMA, v i ( x n ) > 0 v_i(x_n)>0 vi(xn)>0。根据 v i v_i vi的连续性,我们可以得到:(证明 N W N_W NW中参赛者的期望收益上界
    u i = u i ( x n ) = P i ( x n ) v i ( x n ) − ( 1 − P i ( x n ) ) c i ( x n ) ≤ v i ( x n ) → x n → z i v i ( z i ) ≤ v i ( T ) = w i u_i=u_i(x_n)=P_i(x_n)v_i(x_n)-(1-P_i(x_n))c_i(x_n)\le v_i(x_n)\\ \rightarrow_{x_n\rightarrow z_i}v_i(z_i)\le v_i(T)=w_i ui=ui(xn)=Pi(xn)vi(xn)(1Pi(xn))ci(xn)vi(xn)xnzivi(zi)vi(T)=wi
    作用:证明了 N W N_W NW中参赛者期望收益的上界为power。
  • 综合以上引理及其证明。LEAST LEMMA与THRESHOLD LEMMA共同证明了 N W N_W NW中参赛者所有均衡下期望收益等于其power。TIE LEMMA辅助证明ZERO LEMMA,从而证明了 N L N_L NL中参赛者所有均衡下期望收益等于0。(均在标准竞赛的前提下)综合上述两点,定理1得证。

二、Theorem 2 证明过程

  • 总体来说:Theorem 2的证明采用反证法,通过假设反面推理与已证明的Theorem 1部分结论产生矛盾。(基于Generic Condition+均衡存在性+Theorem 1)
  • 正常情况下,全支付竞赛所有参赛者的初始分数都是0,不存在初始优势。因此m+1以后的参赛者很少会参与。
  • 每位参赛者的伯努利效用函数除以 u i ( a i ) u_i(a_i) ui(ai)后并不影响均衡中所有参赛者的策略表现,(伯努利效用函数为: u i ( s ) = P i ( s ) v i ( s i ) − ( 1 − P i ( s ) ) c i ( s i ) u_i(s)=P_i(s)v_i(s_i)-(1-P_i(s))c_i(s_i) ui(s)=Pi(s)vi(si)(1Pi(s))ci(si)因此利用所有参赛者 u i ( a i ) = 1 u_i(a_i)=1 ui(ai)=1的竞赛证明即可代表所有竞赛。(这也是为何定理2中有正则化
  • 证明方法使用反证法。选择该竞赛中的一个均衡 G G G,假设存在某位参赛者 i > m + 1 i>m+1 i>m+1满足定理2的条件并且参与到了竞赛中。即
    c m + 1 ( m a x { a m + 1 , x } ) v m + 1 ( a m + 1 ) < c i ( x ) v i ( a i )  for all  x ∈ S i v m + 1 ( m a x { a m + 1 , x } ) v m + 1 ( a m + 1 ) ≥ v i ( x ) v i ( a i )  for all  x ∈ S i \frac{c_{m+1}(max\{a_{m+1},x\})}{v_{m+1}(a_{m+1})}<\frac{c_i(x)}{v_i(a_i)}\text{ for all $x\in S_i$}\\ \frac{v_{m+1}(max\{a_{m+1},x\})}{v_{m+1}(a_{m+1})}\ge\frac{v_i(x)}{v_i(a_i)}\text{ for all $x\in S_i$}\\ vm+1(am+1)cm+1(max{am+1,x})<vi(ai)ci(x) for all xSivm+1(am+1)vm+1(max{am+1,x})vi(ai)vi(x) for all xSi
  • t i = i n f { x : G i ( x ) = 1 } < T t_i=inf\{x:G_i(x)=1\}<T ti=inf{x:Gi(x)=1}<T t i t_i ti可理解为参赛者 i i i混合策略中所选择分数的最大值, t i ≤ r i < T t_i\le r_i<T tiri<T。令 t i ~ = m a x { a m + 1 , t i } < T \tilde{t_i}=max\{a_{m+1},t_i\}<T ti~=max{am+1,ti}<T,那么 P i ( t i ) < 1 P_i(t_i)<1 Pi(ti)<1由Threshold引理证明过程可得, N W N_W NW中m位参赛者选择分数接近或者超过threshold,参赛者 i i i最高分数才为 t i < T t_i<T ti<T,因此不可能必胜),并且对于任意 δ > 0 : P m + 1 ( t i ~ + δ ) ≥ P i ( t i ) \delta>0:P_{m+1}(\tilde{t_i}+\delta)\ge P_i(t_i) δ>0:Pm+1(ti~+δ)Pi(ti) t i ~ + δ > t i \tilde{t_i}+\delta>t_i ti~+δ>ti,在奖项估值相同为1且代价函数递增的情况下,分数越高获奖概率越大,也称为竞赛的单调性)(竞赛的单调性也是可研究的因素)。因此对于任意 δ > 0 \delta>0 δ>0使得 t i ~ + δ < r m + 1 = T \tilde{t_i}+\delta<r_{m+1}=T ti~+δ<rm+1=T我们有:
    v m + 1 ( t i ~ + δ ) > 0 ≥ − c m + 1 ( t i ~ + δ ) ) v_{m+1}(\tilde{t_i}+\delta)>0\ge -c_{m+1}(\tilde{t_i}+\delta)) vm+1(ti~+δ)>0cm+1(ti~+δ))
    上式的含义是,参赛者m+1选择分数 t i ~ + δ \tilde{t_i}+\delta ti~+δ时代价函数大于等于0且获胜效用大于0。
  • 我们可以得到:
    u m + 1 ≥ P m + 1 ( t i ~ + δ ) v m + 1 ( t i ~ + δ ) − ( 1 − P m + 1 ( t i ~ + δ ) ) c m + 1 ( t i ~ + δ ) ≥ P i ( t i ) v m + 1 ( t i ~ + δ ) − ( 1 − P i ( t i ) ) c m + 1 ( t i ~ + δ ) (根据 P m + 1 ( t i ~ + δ ) ≥ P i ( t i ) ) u_{m+1}\ge P_{m+1}(\tilde{t_i}+\delta)v_{m+1}(\tilde{t_i}+\delta)-(1-P_{m+1}(\tilde{t_i}+\delta))c_{m+1}(\tilde{t_i}+\delta)\\ \ge P_i(t_i)v_{m+1}(\tilde{t_i}+\delta)-(1-P_i(t_i))c_{m+1}(\tilde{t_i}+\delta)\\ \text{(根据$P_{m+1}(\tilde{t_i}+\delta)\ge P_i(t_i)$)} um+1Pm+1(ti~+δ)vm+1(ti~+δ)(1Pm+1(ti~+δ))cm+1(ti~+δ)Pi(ti)vm+1(ti~+δ)(1Pi(ti))cm+1(ti~+δ)(根据Pm+1(ti~+δ)Pi(ti))
  • 根据定理2中的定义可得, c i ( t i ) > c m + 1 ( t i ~ + δ ) , v m + 1 ( t i ~ + δ ) ≥ v i ( t i ) c_i(t_i)>c_{m+1}(\tilde{t_i}+\delta),v_{m+1}(\tilde{t_i}+\delta)\ge v_i(t_i) ci(ti)>cm+1(ti~+δ),vm+1(ti~+δ)vi(ti),由此可得:
    P i ( t i ) v m + 1 ( t i ~ + δ ) − ( 1 − P i ( t i ) ) c m + 1 ( t i ~ + δ ) > P i ( t i ) v i ( t i ) − ( 1 − P i ( t i ) ) c i ( t i ) = u i ( t i ) ≥ 0 P_i(t_i)v_{m+1}(\tilde{t_i}+\delta)-(1-P_i(t_i))c_{m+1}(\tilde{t_i}+\delta)\\ \\>P_i(t_i)v_i(t_i)-(1-P_i(t_i))c_i(t_i)=u_i(t_i)\ge 0 Pi(ti)vm+1(ti~+δ)(1Pi(ti))cm+1(ti~+δ)>Pi(ti)vi(ti)(1Pi(ti))ci(ti)=ui(ti)0
  • 由此可得 u m + 1 > u i ( t i ) ≥ 0 u_{m+1}>u_i(t_i)\ge 0 um+1>ui(ti)0,即 u m + 1 > 0 u_{m+1}>0 um+1>0这有违定理1。(定理1表明 u m + 1 = 0 u_{m+1}=0 um+1=0)根据反证法可得,定理2成立。

三、Corollary 1 证明过程

  • 总体来说:Corollary 1的证明通过特殊化竞赛,利用一些现有结论或特殊性质找到一定存在的均衡,再证明该均衡也存在于原竞赛中即可。(该部分证明独立)
  • 推论1:所有的全支付竞赛中都存在均衡。
  • 考虑一个竞赛 C C C与一个受限的竞赛 C ′ C' C,其中每位参赛者选择分数在 S i ′ = [ a i , K ] , K = m a x i ∈ N r i < ∞ S_i'=[a_i,K],K=max_{i\in N}r_i<\infty Si=[ai,K],K=maxiNri<范围内。(正常竞赛每位参赛者的分数选择范围是 [ a i , ∞ ) [a_i,\infty) [ai,))任何 C ′ C' C中的均衡都是 C C C中的均衡(K是所有参赛者最大的reach,选择大于K的分数一定使得任何参赛者收益为负,不如选择初始分数收入为0),因此我们只要证明 C ′ C' C中一定存在均衡即可。
  • S ∗ = × i ∈ N S i ′ \ { ( s 1 , . . . , s n ) ∣ ∃ i ≠ j : s i = s j } S^*=\times _{i\in N}S_i'\backslash \{(s_1,...,s_n)|\exists i\neq j:s_i=s_j\} S=×iNSi\{(s1,...,sn)i=j:si=sj},换句话说 S ∗ S^* S是所有参赛者备选分数组合然后去掉存在相同分数选择的情况。根据Simon and Zame的研究成果,存在某种打破平局规则,从而使得 C ′ C' C有一个混合策略均衡 G G G。将应用了该种打破平局规则的竞赛表示为 C ~ \tilde{C} C~,均衡 G G G中参赛者的收益为 u i ~ \tilde{u_i} ui~。我们只需证明竞赛 C ~ \tilde{C} C~中的均衡 G G G也是竞赛 C ′ C' C的均衡即可。换句话说,只需证明在 C ′ C' C G G G的混合策略对每位参赛者来说都是最优响应即可。
  • 证明分两步骤进行。第一步证明在竞赛 C ′ C' C中按照均衡 G G G的混合策略决策,参赛者的效用等于 u i ~ \tilde{u_i} ui~。第二步证明不存在其他分数选择使参赛者获得相较于 u i ~ \tilde{u_i} ui~的更高收益。综上 G G G中混合策略在竞赛 C ′ C' C中也是最优响应,即 G G G也是竞赛 C ′ C' C的均衡。从而证明了 C ′ C' C中一定存在均衡,从而得到任意全支付竞赛中都存在均衡。

四、存在的问题

1.Corollary 1的证明过程中通过特殊化竞赛以及利用现有结论证明均衡存在性,请问该方法是否是均衡存在性证明的一贯方法?
2.Tie-Breaking Rule在证明中多次出现,该因素是不是影响竞赛表现的一大关键因素?有无文章关注于该因素?
3.最优响应为何表示为矩阵序列 { x n } n = 1 ∞ \{x_n\}^\infty_{n=1} {xn}n=1?n趋向于无穷的极限代表着什么?

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值