David Silver UCL强化学习课程学习笔记六之Value Function Approximation 值函数估计

Lecture 6: Value Function Approximation
https://www.davidsilver.uk/wp-content/uploads/2020/03/FA.pdf

Introduction

在这里插入图片描述
不同种类的值函数估计 从左到右分别是状态值函数,动作值函数act-in和动作值函数act-out

Incremental Methods 增量方法

在这里插入图片描述
核心思想:利用梯度下降的方法找到一组变量使得值函数的估计值与真实值之间的均方误差最小,即J(w)最小。在lecture4中就有将一般的均值求取变为增量式求取的方法(MC),这里的思路类似。
在这里插入图片描述
MC值函数估计在这里插入图片描述

TD值函数估计
在这里插入图片描述

TD(λ)值函数估计
在这里插入图片描述

增量控制算法
在这里插入图片描述

在这里插入图片描述
bootsrap是第四章出现的名词,大概意为某个状态的价值更新用了其他状态的值,而并非只是用总回报。我们知道MC不是bootstrap的,TD和TD(λ)则都是bootstrap的。

在这里插入图片描述
prediction收敛性分析

在这里插入图片描述在这里插入图片描述
梯度TD 梯度Q学习在查表、线性和非线性下的收敛性分析。

Batch Methods 批方法

在这里插入图片描述
批处理方法意在根据训练数据的经验寻求找到最佳拟合值函数。
在这里插入图片描述
要优化的代价函数LS最小二乘法。
在这里插入图片描述
基于经验的DQN

在这里插入图片描述
线性条件下LS算法的收敛性分析。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值