一图看懂机器学习、深度学习、强化学习与人工智能的关系

在这里插入图片描述
机器学习:一切通过优化方法挖掘数据中规律的学科。
深度学习:一切运用了神经网络作为参数结构进行优化的机器学习算法。
监督学习、无监督学习和强化学习分别是机器学习中三个重要的课题。
强化学习:不仅能利用现有数据,还可以通过对环境的探索获得新数据,并利用新数据循环往复地更新迭代现有模型的机器学习算法。学习是为了更好地对环境进行探索,而探索是为了获取数据进行更好的学习。
可以学习和模拟人类的人工智能通常是由深度学习+强化学习实现的。
在算法方面,人工智能最重要的算法仍是神经网络。

### 关于皮卡丘靶场中的CSRF漏洞攻防实验解决方案 #### 定义理解 跨站请求伪造(CSRF),也被称为one-click attack或者session riding,通常缩写为XSXF, 是种挟制用户在已认证的Web应用程序上执行非本意的操作的攻击方法。CSRF可以使攻击者借助受害者已经经过身份验证的状态,在目标网站上执行某些操作而无需用户的同意。 #### CSRF漏洞成因分析 当个网站未能正确保护其表单提交过程免遭未经授权的访问时,就可能出现CSRF漏洞[^1]。具体来说: - **缺乏防护机制**:如果`xxx购物网站`不对个人信息修改这样的敏感操作实施有效的防CSRF措施,那么这些请求很容易被第三方模仿并发起恶意行为。 - **依赖会话状态**:旦用户处于登录状态,并且点击了由攻击者精心设计好的链接之后,由于浏览器自动附带当前站点的有效cookie信息,这使得服务器误以为这是来自合法用户的正常请求从而予以响应。 #### 防御策略实现 为了防止此类攻击的发生,开发者应当采取系列预防性的编码实践和技术手段来增强应用的安全性: - **引入Token校验**: 对每个可能影响数据变更的动作都附加独无二的次性令牌(token), 并要求客户端随同每次POST请求同传递此token给服务端进行匹配检验。只有当两者致时才允许继续处理业务逻辑;反之则拒绝此次调用。 - **设置Referer/Origin Header检查**: 通过对比HTTP头部携带的实际来源地址(referer 或 origin header) 和预期的目标域名是否相符来进行初步筛选过滤掉那些明显不符合规则的数据包。 - **采用SameSite Cookie属性配置**: 设置Cookie 的 SameSite 属性可以帮助阻止大多数类型的CSRF 攻击。它指示浏览器仅在同站点上下文中发送特定 cookie (即原始页面和目标资源属于同个顶级域) , 进步减少了非法源站利用存储的身份凭证发动攻击的可能性。 ```html <!-- HTML Form with Anti-CSRF Token --> <form action="/change-email" method="post"> <!-- Hidden input field containing the anti-forgery token --> <input type="hidden" name="_csrf_token" value="{{ csrf_token }}"> Email Address:<br> <input type="text" name="email"><br><br> <button type="submit">Submit</button> </form> ``` 上述代码展示了如何在个HTML表单中嵌入隐藏字段用于传输anti-csrf-token,确保每次更改邮箱的行为都是可信可靠的。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值