基于ML或DL的iot ddos detection 文献整理

多篇研究集中在利用机器学习算法检测和防御物联网(IoT)和5G网络中的分布式拒绝服务(DDoS)攻击。研究涉及生成自定义数据集,提取网络流量特征如源IP、目标IP、包大小和时间戳等,并使用多种模型如RF、SVM、KNN、CNN等进行训练和测试。通过特征选择和模型优化,如GTO-BSO、深度卡尔曼反向传播神经网络,提高检测效率和准确性,防止过度拟合。这些工作表明机器学习在IoT安全中的重要作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1
Gupta, B. B., et al. “Smart defense against distributed Denial of service attack in IoT networks using supervised learning classifiers.” Computers & Electrical Engineering 98 (2022): 107726.
模型:RF(误报最低)SVM LR KNN DT NB
在这里插入图片描述

数据集:自己生成
通过模拟包含本地路由器的物联网网络,生成包含物联网网络相关功能的数据集
正常流量的消费者物联网设备,以及攻击流量的受损物联网设备。其中包含总共 241,289 个数据包,其中 31,233 个数据包是良性数据包,210,056 个数据包是恶意数据包
特征:
在这里插入图片描述

https://www.sciencedirect.com/science/article/pii/S0045790622000404

2
Aslam, Muhammad, et al. “Adaptive Machine Learning Based Distributed Denial-of-Services Attacks Detection and Mitigation System for SDN-Enabled IoT.” Sensors 22.7 (2022): 2697.
模型:AMLSDM(本文提出的基于自适应机器学习的分类模型) LEDEM CONA
结合EV RF KNN SVM LR NB AMLSDM-EV最优
在这里插入图片描述

数据集:自己生成
在我们的主机 Linux 机器上运行 sFlow-RT 以捕获由 Mininet SDN 网络拓扑生成的网络流量。我们启动前面描述的 DDoS 威胁模型,并通过 sFlow-RT 监控性能变化。然后我们启动基于机器学习的检测模型 collect.sh,它将网络流量分类为正常攻击或 DDoS 攻击
sklearn.model-selection 将数据集拆分为训练集和测试集。

特征
源 IP 速率 (RSIP):对于给定的目标 IP 地址,此函数显示每单位 tim 的源 IP 数量
流数据包标准差 (SDFP):这是T周期的数据包数量标准差
流字节标准偏差 (SDFB):这是T周期标准偏差中的字节数
交换机上的流条目速率 (RFES):这是每单位时间到交换机的流条目数
The Ratio of Pair-Flow Entries on Switch (RPFES):T周期内的总流数除以交换机中交互划分的流条目数
https://www.mdpi.com/1424-8220/22/7/2697

3
Wang, Jiushuang, Ying Liu, and Huifen Feng. “IFACNN: efficient DDoS attack detection based on improved firefly algorithm to opt

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值