硕士论文导读《基于探地雷达技术及卷积神经网络理论的公路路基病害评价》

该论文探讨了基于探地雷达技术和卷积神经网络(CNN)的公路路基病害识别方法。研究建立了级联CNN系统,用于自动识别探地雷达图像中的病害,提高了识别准确性。实验结果显示,级联CNN在病害分类中的识别准确率超过95%,并且不受雷达频率和路面结构影响。
摘要由CSDN通过智能技术生成

论文题目:基于探地雷达技术及卷积神经网络理论的
公路路基病害评价
作者及单位:长安大学 姜海强

摘要

本文介绍了探地雷达检测的原理和影响检测性能的因素。在此基础上,综述了各类道路材料及包括裂缝、脱空、路基疏松等在内的公路路基病害在探地雷达信号下的典型图像特征,着重介绍了基于病害反射的探地雷达信号识别与优化算法.
。探地雷达技术可以有效克服路基病害的隐蔽性问题,但当前探地雷达的数据分析还依赖于人工识别。为此,本文建立了级联卷积神经网络来实现自动识别探地雷达图像所反映路基病害的任务。级联卷积神经网络系统由两个卷积神经网络组成,分别用于识别低分辨率和高分辨率探地雷达图像。神经网络的建立包括训练、验证和测试三个步骤。通过训练和测试的结果验证了级联卷积神经网络系统的稳定性。将级联卷积神经网络和其他识别算法进行比较,以论证其优越性。结果表明,级联卷积神经网络在路基病害分类训练中的识别准确率为 97.46%,验证中的识别准确率为 95.80%。级联卷积神经网络的识别准确性不受雷达发射频率和路面结构的影响。此外,与 Sobel 边缘检测和 K 值聚类分析相比,级联卷积神经网络系统识别精度更高。

本文做了三件事:

  1. 介绍探地雷达监测的原理和影响监测性能的因素
  2. 综述各类道路材料及各类病害在雷达信号下的典型图像特征
  3. 介绍基于病害反射的探地雷达信号识别与优化算法
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值