机器学习之问题建模(一)

1. 问题建模思维导图

在这里插入图片描述

2. 机器学习解决问题的通用流程

问题建模-特种工程-模型选择-模型融合。

问题建模应包含三方面的内容:评估指标、样本选择、交叉验证。
在这里插入图片描述

3. 评估指标

评估指标很多,我们应该选择一个跟业务指标波动一致的评估指标,这样通过观察评估指标就能判断模型效果,可以大大提高模型迭代效率。

通常,线下使用的是机器学习评估指标,线上使用的是业务指标。为此,在一个新的问题的开始阶段,都会进行多轮模型迭代,来探索与线上业务指标一致的线下指标,尽可能使线下指标的变化趋势跟线上指标一致。

评估指标根据任务类型分类,可分为分类指标、回归指标、聚类指标排序指标等。

3.1分类指标

精确率、召回率
在这里插入图片描述
F1值
F1分数(F1 Score),是统计学中用来衡量二分类模型精确度的一种指标。它同时兼顾了分类模型的精确率和召回率。F1分数可以看作是模型精确率和召回率的一种加权平均,它的最大值是1,最小值是0。
数学定义:F1分数(F1-Score),又称为平衡F分数(BalancedScore),它被定义为精确率和召回率的调和平均数。
在这里插入图片描述
更一般的,我们定义Fβ分数为:在这里插入图片描述
除了F1分数之外,F0.5分数和F2分数,在统计学中也得到了大量应用,其中,F2分数中,召回率的权重高于精确率,而F0.5分数中,精确率的权重高于召回率。

Micro-F1和Macro-F1

最后看Micro-F1和Macro-F1。在第一个多标签分类任务中,可以对每个“类”,计算F1,显然我们需要把所有类的F1合并起来考虑。

这里有两种合并方式:

第一种计算出所有类别总的Precision和Recall,然后计算F1,这种方式被称为Micro-F1微平均。

第二种方式是计算出每一个类的Precison和Recall后计算F1,最后将F1平均,这种范式叫做Macro-F1宏平均。

准确率与错误率
在这里插入图片描述
ROC曲线与AUC

在这里插入图片描述
对数损失logloss
在这里插入图片描述

3.2 回归指标

平均绝对误差MAE

在这里插入图片描述
平均绝对百分误差MAPE
在这里插入图片描述
均方根误差RMSE
在这里插入图片描述

均方根对数误差RMSLE
在这里插入图片描述
RMSLE对预测值偏小的样本惩罚比对预测值偏大的样本惩罚更大。

3.3 排序指标

平均准确率均值MAP
在这里插入图片描述
其中,
yi,j:排序中第j个元素对于查询i是否是相关的;相关为1,不相关为0。
在这里插入图片描述
其中,
πi(j)为j的排序位置。

归一化贴现累计收益NDCG
在这里插入图片描述

4. 样本选择

样本选择是数据预处理中一个非常重要的环节,主要从海量数据中识别和选择相关性高的数据作为模型输入。最理想的样本选择结果是,选择了最少量的训练集S,而模型的效果不会变差。样本选择的好处主要有:减小模型的运算时间、去除相关性低的数据、去除噪声数据。
样本选择有很多方法:数据去噪、采样、原型选择、训练集选择

交叉验证

在离线环节,需要对模型进行评估,根据评估指标选出最佳模型。交叉验证是很好的方法。

交叉验证的主要方法有留出法、K折交叉验证和自助法Bootstrapping。

5. 参考

https://www.jianshu.com/p/d0c59c2470ba
https://blog.csdn.net/sinat_28576553/article/details/80258619

  • 1
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值