56、比特币匿名性分析:基于P2P网络流量

比特币匿名性分析:基于P2P网络流量

1. 比特币交易基础

在比特币系统中,交易是核心操作。以Alice为例,若她拥有比特币地址A,当她想创建新交易(如Transaction 2)来花费之前收到的比特币(Transaction 1)时,需要遵循一定规则。输入的比特币地址必须与引用输出的比特币地址匹配,并且交易发送者要用私钥对交易进行签名。

比如,Alice想从Bob处接收50比特币(BTC),她会创建一个非对称密钥对,并将公钥A+给Bob。Bob创建交易并将Alice的公钥编码为交易输出的接收者(Transaction 1)。之后,Alice要给Charlie发送20 BTC,她创建新交易,在输入中引用从Bob处收到的钱(Transaction 2)。由于比特币协议规定输入中不能指定要花费的比特币数量,为了只给Charlie发送20 BTC,Alice要创建额外输出将30 BTC找零给自己(Transaction 2, Output 1),后续还能在其他交易中引用这笔找零。最后,Alice用私钥(A -)签署新交易,并将签名包含在相应输入中,以此验证引用硬币的所有权并保护交易完整性。

通常,建议用户拥有多个比特币地址,所以Alice可以把找零发送到自己的其他地址。若她要花费超过50 BTC,还能创建额外输入引用旧交易,这就是多输入交易。

2. P2P中继机制

比特币使用八卦协议在网络中中继消息。用户创建交易后,会将其发送给直接连接的对等节点。这些对等节点会评估交易是否有效,有效则转发给其他对等节点,使交易在网络中传播;无效则直接忽略。

交易在进一步中继前要经过一系列检查,除基本格式检查确保符合协议外,常见被忽略的交易

【源码免费下载链接】:https://renmaiwang.cn/s/3r450 支持向量机(Support Vector Machines,SVM)是机器学习领域一种强大的监督学习算法,尤其在分类和回归问题上表现出色。本章聚焦于通过Python 3.7实现支持向量机,提供详尽的代码注解,帮助读者深入理解其工作原理。一、支持向量机基本概念支持向量机的核心思想是找到一个最优超平面,该超平面能够最大程度地将不同类别的数据分开。超平面是特征空间中的一个决策边界,它由距离最近的训练样本(即支持向量)决定。SVM的目标是最大化这些最接近样本的距离,也就是所谓的间隔。二、SVM的两种类型1. 线性SVM:当数据线性可分时,SVM可以找到一个线性超平面进行分类。2. 非线性SVM:通过核函数(如高斯核、多项式核等)将低维非线性数据映射到高维空间,从而在高维中找到一个线性超平面进行分类。三、SVM的主要组成部分1. 决策函数:SVM使用超平面作为决策边界,形式为`w·x+b=0`,其中`w`是超平面的法向量,`b`是偏置项。2. 支持向量:位于最近间隔边缘的数据点,对超平面的位置至关重要。3. 软间隔:允许一部分样本落在决策边界内,通过惩罚项C控制误分类的程度。4. 核函数:用于实现非线性分类,如高斯核(RBF,Radial Basis Function):`K(x, y) = exp(-γ||x-y||^2)`,其中γ是调整核函数宽度的参数。四、Python实现SVM在Python中,我们可以使用Scikit-Learn库来实现SVM。Scikit-Learn提供了多种SVM模型,如`svm.SVC`(用于分类)、`svm.LinearSVC`(仅线性分类)和`svm.NuSVC`(nu版本的SVM,支持类别不平衡问题)。五、SVM的训练与预测流程1. 数据预处理:将数据归一化或标准化,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值