线性代数的本质-02

线性组合、张成的空间与基

关于向量坐标的补充

  1. 一对数和二维向量间的关系
    向量坐标,是在数与向量之间反复出现的概念,比如说一对数和二维向量,我想你们大部分人都很熟悉向量坐标这个概念,但是还有一种有趣的方式来看待这些坐标,它对线性代数非常重要。当你看到一对描述向量的数时,比如(3,-2)我想让你把它每个坐标看作一个标量,也就是说它们如何拉伸或压缩一个向量。
    在xy坐标系中,有两个非常特别的向量,一个指向正右方,长度为1,通常被称为“i帽”或者x方向的单位向量;另一个指向正上方,长度为1,通常被称为“j帽”或者y方向的单位向量。现在想象向量(3,-2)的x坐标是一个标量,它将i帽拉伸为原来的3倍,y坐标也是一个标量,它将j帽反向拉伸为原来的2倍。从这个角度去看,这个向量实际上是两个经过缩放的向量的和,故缩放向量并且相加这一概念至关重要。
  2. 其他注意事项
    1)i与j是xy坐标系的基向量,当你把坐标看作标量时,基向量实际上就是这些标量所缩放的对象。
    2)任选一组不同方向的基向量,当改变所选择的标量时,可以得到平面上所有的二维向量。(此处有待深入研究)
    3)每当我们用数字描述向量时,它都依赖于我们正在使用的基。
    4)两个向量标量乘法之和的结果被称为这两个向量的线性组合,
    见下式。
    a v ⃗ + b w ⃗ a\vec{v}+b\vec{w} av +bw

什么是“线性”?

如果固定其中一个标量,让另一个标量自由变化,所产生的向量的终点会描出一条直线;如果让两个标量同时自由变化,考虑所有可能得到的向量,可能有两种情况,大部分情况下,对于一对初始向量,你能到达平面中的每一个点,得到所有二维向量。但是也有特殊情况,当两个初始向量刚好共线,所产生的向量的终点被限制在一条过原点的直线上;两个向量都是零向量,则被限制在原点。

张成的空间:

所有可以表示为给定向量线性组合的向量集合,被称为给定向量张成的空间。对大部分二维向量来说,它们张成的空间是所有二维向量的集合,但当共线时,它们张成的空间就是终点落在一条直线上的向量的集合,还记得我曾说的”线性代数紧紧围绕向量的加法和数乘吗?两个向量张成的空间实际上是问,仅通过向量加法与向量数乘这两种基础运算,你能获得的所有可能向量的集合是什么?

向量和点

现在是时候讨论一下通常我们是如何将向量看作点的。通常我们用向量的终点代表该向量,起点位于原点。单个向量看作箭头,多个向量看作点,
如果我们再去考虑三维空间,张成空间这个概念就开始有些意思了,举个例子,在三维空间中取两个指向不同方向的向量,它们张成的空间是什么?是一个过原点的平面,这个平面就是这两个向量张成的空间,所有终点落在这个平面上的向量的集合是这两个向量张成的空间。那么如果我们再加上第三个向量,考虑它们张成的空间又是什么样子呢?三个向量线性组合的定义跟之前的方法基本一致,见下式。
a v ⃗ + b w ⃗ + c u ⃗ a\vec{v}+b\vec{w}+c\vec{u} av +bw +cu
选择三个标量,对三个向量分别进行缩放,然后把结果相加,而这三个向量所有可能的线性组合构成了它们张成的空间。这里有两种情况,如果第三个向量恰好落在前两个向量所张成的平面上,它们张成的空间并不改变,仍旧是同样的平面(线性相关);但是如果你随机选一个向量,它几乎不可能落在前两个向量所张成的平面内(线性无关),这种情况下,由于第三个向量指向不同的方向,我们能够得到所有的三维向量,当你缩放第三个向量时,它将前两个向量张成的平面沿它的方向来回移动,从而扫过整个空间。

什么是线性无关?

u ⃗ = a v ⃗ + b w ⃗ \vec{u}\cancel{=}a\vec{v}+b\vec{w} u = av +bw
a和b取所有值

什么是空间的一个基?

张成该空间的一个线性无关向量的集合

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

高达十几个

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值