结构和工作方式
根据神经网络运行过程中的信息流向,可分为前馈式和反馈式两种基本类型。前馈网络(如BP神经网络)的输出仅由当前输入和权矩阵决定,而与网络先前的输出状态无关。
Hopfield是一种典型的反馈型神经网络。Hopfield网络分为离散型和连续型两种网络模型,分别记作DHNN(discrete hopfield neural network)和CHNN(continues hopfield neural network),本文重点讨论DHNN。
特点:
1.和MPL(Multilayer perceptron;多层感知机)不同,多层感知机的每一层承担不同的功能,比如输入层只负责输入,输出层只负责输出,DHNN网络每一层都承担相同的功能。
2.网络中所有神经元的输入为:除自己之外的所有神经元的输出(符号X,n-1个),对输入加权求和,再减去阈值(符号T)。注:也有包含自反馈的DHNN,引入自反馈可以增加网络的信息储存容量。
基本概念:
1.网络的状态:DHNN网中的每个神经元有相同的功能,其输出称为状态,用Xj表示,所有神经元状态的集合就构成反馈网络的状态,如式(1)所示。
X = [ x 1 , x 2 , . . . , x n ] T ( 1 ) X=[x_1,x_2,...,x_n]^T\qquad(1) X=[x1,x2,...,xn]T(1)
注:
1)为什么不叫‘输出’?因为如果理解成输出,此输出是在不断变化的,所以称之为‘状态’更合适。
2)为什么用X表示,一般输出都是用Y?因为输出会反馈回来变输入,所以X与Y等价。
2.反馈网络的输入就是网络的初始状态值,如式(2)所示。
X ( 0 ) = [ x 1 ( 0 ) , x 2 ( 0 ) , . . . , x n ( 0 ) ] T ( 2 ) X(0)=[x_1(0),x_2(0),...,x_n(0)]^T\qquad(2) X(0)=[x1(0),x2(0),...,xn(0)