图的深度优先搜索(DFS)与宽度优先搜索(BFS)

图的深度优先搜索与宽度优先搜索

宽度优先搜索算法(又称广度优先搜索)

图的深度优先搜索dfs—c++版

void DFS_graph(GraphNode *node, int visit[]){
	visit[node->label] = 1; //标记已访问的节点
	printf("%d ", node->label);
	for (int i = 0; i < node->neighbors.size(); i++){ //访问相邻且没有被访问过的节点
		if (visit[node->neighbors[i]->label] == 0){
			DFS_graph(node->neighbors[i], visit);
		}
	}
} 

图的宽度优先搜索bfs—c++版

void BFS_graph(GraphNode *node, int visit[]){
	std::queue<GraphNode *> Q;
	Q.push(node);
	visit[node->label] = 1;
	while(!Q.empty()){
		GraphNode *node = Q.front();
		Q.pop();
		printf("%d ", node->label);
		for (int i = 0; i < node->neighbors.size(); i++){
			if (visit[node->neighbors[i]->label] == 0){
				Q.push(node->neighbors[i]);
				visit[node->neighbors[i]->label] = 1;
			}
		}
	}
}

图的深度优先搜索–java版

import java.util.*;

/*定义图中的节点的数据结构*/
class Node {
    int val;                // 节点数据
    List<Node> neighbours;  // 相邻其他节点

    public Node(int x) {
        val = x;
        neighbours = new ArrayList<Node>();
    }
}

public class Code1 {
    public static void main(String[] args) {
        Node begin = createGraph();
        Set<Node> visited = new HashSet<>();
        System.out.println("DFS:");
        DFS(begin, visited);
        System.out.println("BFS:");
        BFS(begin);
    }

    /* 创建图,返回一个节点 */
    public static Node createGraph() {
        Node v1 = new Node(1);
        Node v2 = new Node(2);
        Node v3 = new Node(3);
        Node v4 = new Node(4);
        Node v5 = new Node(5);
        Node v6 = new Node(6);
        Node v7 = new Node(7);
        Node v8 = new Node(8);

        v1.neighbours.add(v2);
        v1.neighbours.add(v3);
        v1.neighbours.add(v4);
        v1.neighbours.add(v5);

        v2.neighbours.add(v6);
        v2.neighbours.add(v7);

        v4.neighbours.add(v8);
        return v1;
    }

    /**
     * 深度优先
     *
     * @param v       源顶点
     * @param visited 集合类型,记录所有已访问顶点
     */
    public static void DFS(Node v, Set<Node> visited) {
        if (visited.contains(v))
            return;
        else {
            System.out.println("Visit node:" + v.val);
            visited.add(v);
            for (Node next : v.neighbours) {
                DFS(next, visited);
            }
        }
    }

}

图的宽度优先搜索–java版

    /**
     * 宽度优先
     *
     * @param v 源顶点,即出发顶点
     */
    public static void BFS(Node v) {
        Set<Node> visited = new HashSet<>();
        Queue<Node> queue = new LinkedList<>();
        queue.offer(v);     // 入队列
        while (!queue.isEmpty()) {
            Node node = queue.poll();   // 出队列并删除
            if (!visited.contains(node)) {
                System.out.println("Visit node:" + node.val);
                visited.add(node);
                for (Node next : node.neighbours) {
                    queue.offer(next);
                }
            }
        }
    }

图的深度优先搜索和–完整代码–c++版

#include <stdio.h>
#include <vector>

struct GraphNode{
	int label;
	std::vector<GraphNode *> neighbors;
	GraphNode(int x) : label(x) {};
};

void DFS_graph(GraphNode *node, int visit[]){
	visit[node->label] = 1;
	printf("%d ", node->label);
	for (int i = 0; i < node->neighbors.size(); i++){
		if (visit[node->neighbors[i]->label] == 0){
			DFS_graph(node->neighbors[i], visit);
		}
	}
} 

int main(){
	const int MAX_N = 5;
	GraphNode *Graph[MAX_N];	
	for (int i = 0; i < MAX_N; i++){
		Graph[i] = new GraphNode(i);
	}
	
	Graph[0]->neighbors.push_back(Graph[4]);
	Graph[0]->neighbors.push_back(Graph[2]);	
	Graph[1]->neighbors.push_back(Graph[0]);
	Graph[1]->neighbors.push_back(Graph[2]);
	Graph[2]->neighbors.push_back(Graph[3]);
	Graph[3]->neighbors.push_back(Graph[4]);
	Graph[4]->neighbors.push_back(Graph[3]);
	
	int visit[MAX_N] = {0};
	for (int i = 0; i < MAX_N; i++){
		if (visit[i] == 0){
			printf("From label(%d) : ", Graph[i]->label);
			DFS_graph(Graph[i], visit);
			printf("\n");
		}
	}
	
	for (int i = 0; i < MAX_N; i++){
		delete Graph[i];
	}
	
	return 0;
}

图的宽度优先搜索–完整代码–c++版

#include <stdio.h>
#include <vector>
#include <queue>

struct GraphNode{
	int label;
	std::vector<GraphNode *> neighbors;
	GraphNode(int x) : label(x) {};
};

void BFS_graph(GraphNode *node, int visit[]){
	std::queue<GraphNode *> Q;
	Q.push(node);
	visit[node->label] = 1;
	while(!Q.empty()){
		GraphNode *node = Q.front();
		Q.pop();
		printf("%d ", node->label);
		for (int i = 0; i < node->neighbors.size(); i++){
			if (visit[node->neighbors[i]->label] == 0){
				Q.push(node->neighbors[i]);
				visit[node->neighbors[i]->label] = 1;
			}
		}
	}
}

int main(){
	const int MAX_N = 5;
	GraphNode *Graph[MAX_N];
	for (int i = 0; i < MAX_N; i++){
		Graph[i] = new GraphNode(i);
	}
	
	Graph[0]->neighbors.push_back(Graph[4]);
	Graph[0]->neighbors.push_back(Graph[2]);
	Graph[1]->neighbors.push_back(Graph[0]);
	Graph[1]->neighbors.push_back(Graph[2]);
	Graph[2]->neighbors.push_back(Graph[3]);
	Graph[3]->neighbors.push_back(Graph[4]);
	Graph[4]->neighbors.push_back(Graph[3]);
	
	int visit[MAX_N] = {0};
	for (int i = 0; i < MAX_N; i++){
		if (visit[i] == 0){
			printf("From label(%d) : ", Graph[i]->label);
			BFS_graph(Graph[i], visit);
			printf("\n");
		}
	}
	
	for (int i = 0; i < MAX_N; i++){
		delete Graph[i];
	}
	
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值