DFS(深度优先搜索)和BFS(宽度优先搜索)

本文详细介绍了深度优先搜索(DFS)和宽度优先搜索(BFS)这两种图搜索方法。DFS全排列解法通过剪枝避免无效搜索,递归构建二进制串展示了其开枝散叶的过程。BFS则通过队列实现全排列,从初始节点逐层展开直到找到目标节点。
摘要由CSDN通过智能技术生成

目录

DFS(深度优先搜索)

全排列的DFS解法

 利用DFS递归构建二进制串和递归树的结构剖析

DFS--剪枝

DFS例题--整数划分

 BFS(宽度优先搜索)

 全排列的BFS解法


DFS(深度优先搜索)

        深度优先搜索(Depth First Search,DFS)是十分常见的图搜索方法之一。深度优先搜索会沿着一条路径一直搜索下去,在无法搜索时,回退到刚刚访问过的节点。深搜优先搜索的本质上就是持续搜索,遍历了所有可能的情况。DFS搜索的流程是一个树的形式,每次一条路走到低。

全排列的DFS解法

public class DFS {
    public static void main(String[] args) {
        DFS(0, "", 3);
    }

    public static void DFS(int depth, String ans, int n) {
        if (depth == n) {//深度等于n时就输出
            System.out.print(ans + " ");
            return;
        }
        for (int i = 1; i <= n; i++) {
                DFS(depth + 1, ans + i, n);           
        }
    }
}

如果不对其进行剪枝操作,就会将所有的子叶全部输出

 所以在需要要求全排列的情况下我们就需要进行剪枝,也就是对递归循环进行判断

public class DFS {
    public static void main(String[] args) {
        DFS(0, "", 3);
    }

    public static void DFS(int depth, String ans, int n) {
        if (depth == n) {//深度等于n时就输出
            System.out.print(ans + " ");
            return;
        }
        for (int i = 1; i <= n; i++) {
            if (! ans.contains("" + i)) {
                //目前已经生成的ans串用过的不能再用(剪枝)
                DFS(depth + 1, ans + i, n);
            }
            //public boolean contains(CharSequence s)
            // 当且仅当此字符串包含指定的 char 值序列时,返回 true。
        }
    }
}

这样得到的结果就是全排列后的结果了


 

 

评论 25
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

周小末天天开心

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值