Python 数据可视化分析(二)

本文介绍了Python数据可视化分析的第二部分,涉及多标量可视化,包括相关矩阵和散点图的绘制,以及如何通过seaborn库深入分析数据。还探讨了交叉表在类别分析中的应用,以及全局数据集的降维方法——t-SNE,用于在保持信息完整性的同时降低数据维度。最后,通过实验总结强调了可视化在数据挖掘中的重要性。
摘要由CSDN通过智能技术生成

Python 数据可视化分析(二)


多标量可视化

在单张图像中查看两个以上变量的联系

  • 相关矩阵:可揭示数据集中的数值变量的相关性。
  • 使用corr()放大计算出特征间的相关性,然后将所得到的的相关矩阵传给seaborn的heatmap()方法,然后根据提供的值渲染出一个基于色彩编码的矩阵
    # 删除非数值变量
    numerical =list(set(df.columns) - set(['字段名'])) # 字段名可以使多个,用逗号隔开
    # 计算和绘图
    corr_matrix = df[numerical].corr()
    sns.heatmap(corr_matrix)

image.png

  • 散点图:将两个数值变量的值显示为二维空间中的笛卡尔坐标,通过matplotlib库的scatter()方法创建
    plt.scatter(df['字段名1'
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值