技术背景介绍
随着大语言模型(LLM)的普及,数据标注的重要性愈发凸显。Label Studio 是一个开源数据标注平台,它与 LangChain 集成后,可以方便地获取、标注和管理用于微调LLM的数据集。这一整合允许开发者通过人类反馈来优化LLM的反应,提高其性能。
核心原理解析
通过将 Label Studio 与 LangChain 的管道连接,我们可以:
- 聚合数据:将所有输入提示、对话和响应集中在一个 Label Studio 项目中,便于标注和分析。
- 数据集构建:优化提示和响应,构建用于监督微调(SFT)和人类反馈强化学习(RLHF)的数据集。
- 反应评估:通过界面评审和批注LLM的反应,进行迭代优化。
代码实现演示
安装和设置
首先,安装最新版本的 Label Studio 及其 API 客户端:
%pip install --upgrade --quiet langchain label-studio label-studio-sdk langchain-openai langchain-community
启动本地 Label Studio 实例:
label-studio
在浏览器中打开 http://localhost:8080 并生成 API 调用所需的令牌。配置环境变量:
import os
os.environ["LABEL_STUDIO_URL"] = "http://localhost:8080" # 您的LabelStudio URL
os.environ["LABEL_STUDIO_API_KEY"] = "your-label-studio-api-key"
os.environ["OPENAI_API_KEY"] = "your-openai-api-key"
LLM提示和响应收集
在 Label Studio 创建一个项目,使用如下XML配置:
<View>
<Style>
.prompt-box {
background-color: white;
border-radius: 10px;
box-shadow: 0px 4px 6px rgba(0, 0, 0, 0.1);
padding: 20px;
}
</Style>
<View className="root">
<View className="prompt-box">
<Text name="prompt" value="$prompt"/>
</View>
<TextArea name="response" toName="prompt"
maxSubmissions="1" editable="true"
required="true"/>
</View>
<Header value="Rate the response:"/>
<Rating name="rating" toName="prompt"/>
</View>
连接到 LangChain:
from langchain_community.callbacks.labelstudio_callback import LabelStudioCallbackHandler
from langchain_openai import OpenAI
llm = OpenAI(
temperature=0,
callbacks=[LabelStudioCallbackHandler(project_name="My Project")]
)
print(llm.invoke("Tell me a joke"))
收集聊天模型对话
配置项目以追踪聊天对话:
<View>
<View className="root">
<Paragraphs name="dialogue"
value="$prompt"
layout="dialogue"
textKey="content"
nameKey="role"
granularity="sentence"/>
<Header value="Final response:"/>
<TextArea name="response" toName="dialogue"
maxSubmissions="1" editable="true"
required="true"/>
</View>
<Header value="Rate the response:"/>
<Rating name="rating" toName="dialogue"/>
</View>
在 LangChain 中调用:
from langchain_core.messages import HumanMessage, SystemMessage
from langchain_openai import ChatOpenAI
chat_llm = ChatOpenAI(
callbacks=[LabelStudioCallbackHandler(mode="chat", project_name="New Project with Chat")]
)
llm_results = chat_llm.invoke(
[
SystemMessage(content="Always use a lot of emojis"),
HumanMessage(content="Tell me a joke"),
]
)
应用场景分析
- 增强LLM的准确性:通过标注数据微调模型,使其更好地理解和响应复杂提示。
- 用户体验优化:通过人类反馈不断改进模型的交互能力。
- 多轮对话管理:在复杂的对话环境中评估和改进模型响应。
实践建议
- 尽可能多地收集多样化的标注数据,以覆盖更多场景和异常情况。
- 定期更新标注配置,确保其符合当前项目需求和技术发展趋势。
- 使用 Label Studio 提供的评审功能,快速迭代模型测试版本。
如果遇到问题欢迎在评论区交流。
—END—