使用 Label Studio 和 LangChain 构建灵活的LLM数据标注与评估平台

技术背景介绍

随着大语言模型(LLM)的普及,数据标注的重要性愈发凸显。Label Studio 是一个开源数据标注平台,它与 LangChain 集成后,可以方便地获取、标注和管理用于微调LLM的数据集。这一整合允许开发者通过人类反馈来优化LLM的反应,提高其性能。

核心原理解析

通过将 Label Studio 与 LangChain 的管道连接,我们可以:

  1. 聚合数据:将所有输入提示、对话和响应集中在一个 Label Studio 项目中,便于标注和分析。
  2. 数据集构建:优化提示和响应,构建用于监督微调(SFT)和人类反馈强化学习(RLHF)的数据集。
  3. 反应评估:通过界面评审和批注LLM的反应,进行迭代优化。

代码实现演示

安装和设置

首先,安装最新版本的 Label Studio 及其 API 客户端:

%pip install --upgrade --quiet langchain label-studio label-studio-sdk langchain-openai langchain-community

启动本地 Label Studio 实例:

label-studio

在浏览器中打开 http://localhost:8080 并生成 API 调用所需的令牌。配置环境变量:

import os

os.environ["LABEL_STUDIO_URL"] = "http://localhost:8080"  # 您的LabelStudio URL
os.environ["LABEL_STUDIO_API_KEY"] = "your-label-studio-api-key"
os.environ["OPENAI_API_KEY"] = "your-openai-api-key"

LLM提示和响应收集

在 Label Studio 创建一个项目,使用如下XML配置:

<View>
<Style>
    .prompt-box {
        background-color: white;
        border-radius: 10px;
        box-shadow: 0px 4px 6px rgba(0, 0, 0, 0.1);
        padding: 20px;
    }
</Style>
<View className="root">
    <View className="prompt-box">
        <Text name="prompt" value="$prompt"/>
    </View>
    <TextArea name="response" toName="prompt"
              maxSubmissions="1" editable="true"
              required="true"/>
</View>
<Header value="Rate the response:"/>
<Rating name="rating" toName="prompt"/>
</View>

连接到 LangChain:

from langchain_community.callbacks.labelstudio_callback import LabelStudioCallbackHandler
from langchain_openai import OpenAI

llm = OpenAI(
    temperature=0,
    callbacks=[LabelStudioCallbackHandler(project_name="My Project")]
)
print(llm.invoke("Tell me a joke"))

收集聊天模型对话

配置项目以追踪聊天对话:

<View>
<View className="root">
     <Paragraphs name="dialogue"
               value="$prompt"
               layout="dialogue"
               textKey="content"
               nameKey="role"
               granularity="sentence"/>
  <Header value="Final response:"/>
    <TextArea name="response" toName="dialogue"
              maxSubmissions="1" editable="true"
              required="true"/>
</View>
<Header value="Rate the response:"/>
<Rating name="rating" toName="dialogue"/>
</View>

在 LangChain 中调用:

from langchain_core.messages import HumanMessage, SystemMessage
from langchain_openai import ChatOpenAI

chat_llm = ChatOpenAI(
    callbacks=[LabelStudioCallbackHandler(mode="chat", project_name="New Project with Chat")]
)
llm_results = chat_llm.invoke(
    [
        SystemMessage(content="Always use a lot of emojis"),
        HumanMessage(content="Tell me a joke"),
    ]
)

应用场景分析

  1. 增强LLM的准确性:通过标注数据微调模型,使其更好地理解和响应复杂提示。
  2. 用户体验优化:通过人类反馈不断改进模型的交互能力。
  3. 多轮对话管理:在复杂的对话环境中评估和改进模型响应。

实践建议

  • 尽可能多地收集多样化的标注数据,以覆盖更多场景和异常情况。
  • 定期更新标注配置,确保其符合当前项目需求和技术发展趋势。
  • 使用 Label Studio 提供的评审功能,快速迭代模型测试版本。

如果遇到问题欢迎在评论区交流。

—END—

### Label Studio 下载及安装 Label Studio 是一款功能强大的开源工具,用于完成各种类型的数据标注任务。要下载安装 Label Studio,可以按照以下方法操作: 通过 Python 脚本安装 Label Studio: ```bash pip install label-studio ``` 启动 Label Studio 服务可以通过运行以下命令实现: ```bash label-studio start my_project --init ``` 这一步会初始化一个新的项目 `my_project` 并自动打开浏览器页面[^1]。 --- ### 文本数据标注教程 #### 创建新项目 在首次访问 Label Studio 后,用户需要创建一个新项目来处理文本数据标注任务。点击界面中的 “Create Project”,然后选择适合的任务模板。对于文本数据标注,可以选择预定义的 **Text Classification** 或者自定义配置文件以满足特定需求[^2]。 #### 配置标注界面 为了适应不同的标注场景,在创建好项目之后还需要进一步设置标注接口 (Labeling Interface)。具体来说,编辑项目的 XML 配置文件能够调整显示样式以及交互逻辑。例如下面这段代码展示了一个简单的命名实体识别(NER)任务所需的标签结构: ```xml <View> <Labels name="ner_label" toName="text"> <Choice value="Person"/> <Choice value="Location"/> <Choice value="Organization"/> </Labels> <Text name="text" value="$text"/> </View> ``` 上述片段定义了三个类别选项供标注人员选择:人物(Person),地点(Location),机构(Organization)[^1]。 #### 导入待标注数据 准备好原始未标记文档集合后就可以将其导入到系统当中作为输入源材料。支持多种常见格式如 CSV, JSONL 等形式上传批量记录条目。每一条都应该至少包含字段名对应实际内容部分以便后续呈现给工作者查看确认。 #### 开始执行人工审核流程 当一切准备就绪以后便能正式开启作业环节啦~ 登录账户进入指定工作区即可看到等待处理项列表;逐一审阅并打上相应标志直至全部完成为止哦! --- ### 注意事项 - 如果遇到任何技术难题或者想要获取更多高级特性指导建议查阅官方帮助手册链接地址。 - 定期保存进度防止意外丢失修改成果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值