洛谷P1726 上白泽慧音(强连通分量)
题目描述
在幻想乡,上白泽慧音是以知识渊博闻名的老师。春雪异变导致人间之里的很多道路都被大雪堵塞,使有的学生不能顺利地到达慧音所在的村庄。因此慧音决定换一个能够聚集最多人数的村庄作为新的教学地点。人间之里由N个村庄(编号为1..N)和M条道路组成,道路分为两种一种为单向通行的,一种为双向通行的,分别用1和2来标记。如果存在由村庄A到达村庄B的通路,那么我们认为可以从村庄A到达村庄B,记为(A,B)。当(A,B)和(B,A)同时满足时,我们认为A,B是绝对连通的,记为<A,B>。绝对连通区域是指一个村庄的集合,在这个集合中任意两个村庄X,Y都满足<X,Y>。现在你的任务是,找出最大的绝对连通区域,并将这个绝对连通区域的村庄按编号依次输出。若存在两个最大的,输出字典序最小的,比如当存在1,3,4和2,5,6这两个最大连通区域时,输出的是1,3,4。输入输出格式
输入格式:
第1行:两个正整数N,M第2..M+1行:每行三个正整数a,b,t, t = 1表示存在从村庄a到b的单向道路,t = 2表示村庄a,b之间存在双向通行的道路。保证每条道路只出现一次。
输出格式:
第1行: 1个整数,表示最大的绝对连通区域包含的村庄个数。第2行:若干个整数,依次输出最大的绝对连通区域所包含的村庄编号。
输入输出样例
输入样例:
5 51 2 1
1 3 2
2 4 2
5 1 2
3 5 1
输出样例:
31 3 5
说明
对于60%的数据:N <= 200且M <= 10,000对于100%的数据:N <= 5,000且M <= 50,000
解题分析:
用Tarjan算法求强连通分量。
#include
#include
#include
#include
#include
#include
using namespace std; #define N 5005 #define M 50005 int n, m, tot = 0, head[N], vis[N] = {0}, ans = 0, cnt_r=0; int idx=0, dfn[N] = {0}, low[N] = {0}, stk[N], top=0; vector
result[N]; struct node{ int to; int next; node():next(-1){ } }e[M]; void get_i(int &x){ char ch = getchar(); x = 0; while(!isdigit(ch)) ch = getchar(); while(isdigit(ch)){ x = x * 10 + ch - '0'; ch = getchar(); } } bool cmp(vector
v1, vector
v2){ int i; if(v1.size()!=v2.size()) return v1.size() > v2.size(); else{ for(i=0; i
v2[i]) return 0; } return 1; } void add_e(int from, int to){ e[tot].to = to; e[tot].next = head[from]; head[from] = tot++; } void tarjan(int k){ int i, cnt, j; vis[k] = 1; dfn[k] = low[k] = ++idx; stk[top++] = k; for(i=head[k]; ~i; i=e[i].next){ j = e[i].to; if(!vis[j]){ tarjan(j); low[k] = min(low[k], low[j]); } else if(vis[j] == 1){ low[k] = min(low[k], dfn[j]); } } int k1; cnt = 0; if(dfn[k] == low[k]){ // 得到一个强连通子图 do{ top--; k1 = stk[top]; vis[k1]=2; result[cnt_r].push_back(k1); cnt++; }while(low[k1] != dfn[k1]); cnt_r++; // 连通子图的个数加1 if(ans