单目标优化算法大总结

单目标优化算法概览

国际期刊International Journal of Complexity in Applied Science and Technology,收录进化计算,机器学习和大数据方面的论文, 投稿网址:https://www.inderscience.com/jhome.php?jcode=ijcast 

以下是目前已知的单目标优化算法,包括它们的提出者和主要文献:

这些算法涵盖了单目标优化的广泛领域,并且每种算法都有其独特的机制和应用场景。

  1. 遗传算法 (Genetic Algorithm, GA)

    • 提出者:John Holland
    • 主要文献:Holland, J. H. (1975). "Adaptation in Natural and Artificial Systems."
  2. 粒子群优化 (Particle Swarm Optimization, PSO)

    • 提出者:James Kennedy and Russell Eberhart
    • 主要文献:Kennedy, J., & Eberhart, R. (1995). "Particle Swarm Optimization." Proceedings of IEEE International Conference on Neural Networks.
  3. 布谷鸟优化 (Cuckoo Search, CS)

    • 提出者:Xin-She Yang and Suash Deb
    • 主要文献:Yang, X. S., & Deb, S. (2009). "Cuckoo Search via Lévy Flights." World Congress on Nature & Biologically Inspired Computing.
  4. 萤火虫算法 (Firefly Algorithm, FA)

    • 提出者:Xin-She Yang
    • 主要文献:Yang, X. S. (2008). "Nature-Inspired Metaheuristic Algorithms."
  5. 模拟退火 (Simulated Annealing, SA)

    • 提出者:Scott Kirkpatrick, C. Daniel Gelatt, and Mario P. Vecchi
    • 主要文献:Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). "Optimization by Simulated Annealing." Science.
  6. 差分进化 (Differential Evolution, DE)

    • 提出者:Rainer Storn and Kenneth Price
    • 主要文献:Storn, R., & Price, K. (1997). "Differential Evolution – A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces." Journal of Global Optimization.
  7. 蚁群优化 (Ant Colony Optimization, ACO)

    • 提出者:Marco Dorigo
    • 主要文献:Dorigo, M., Maniezzo, V., & Colorni, A. (1996). "Ant System: Optimization by a Colony of Cooperating Agents." IEEE Transactions on Systems, Man, and Cybernetics.
  8. 禁忌搜索 (Tabu Search, TS)

    • 提出者:Fred Glover
    • 主要文献:Glover, F. (1986). "Future Paths for Integer Programming and Links to Artificial Intelligence." Computers & Operations Research.
  9. 蜜蜂算法 (Bee Algorithm)

    • 提出者:D.T. Pham et al.
    • 主要文献:Pham, D. T., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S., & Zaidi, M. (2006). "The Bees Algorithm." Manufacturing Engineering Centre, Cardiff University.
  10. 蝙蝠算法 (Bat Algorithm, BA)

    • 提出者:Xin-She Yang
    • 主要文献:Yang, X. S. (2010). "A New Metaheuristic Bat-Inspired Algorithm." Nature Inspired Cooperative Strategies for Optimization (NICSO 2010).
  11. 人工蜂群算法 (Artificial Bee Colony, ABC)

    • 提出者:Dervis Karaboga
    • 主要文献:Karaboga, D. (2005). "An Idea Based on Honey Bee Swarm for Numerical Optimization." Technical Report-TR06, Erciyes University.
  12. 鸽群算法 (Pigeon-inspired Optimization, PIO)

    • 提出者:S. C. and L. M. Liu
    • 主要文献:Duan, H., & Qiao, P. (2014). "Pigeon-inspired Optimization: A New Swarm Intelligence Optimizer for Air Robot Path Planning." International Journal of Intelligent Computing and Cybernetics.
  13. 鲸鱼优化算法 (Whale Optimization Algorithm, WOA)

    • 提出者:Seyedali Mirjalili and Andrew Lewis
    • 主要文献:Mirjalili, S., & Lewis, A. (2016). "The Whale Optimization Algorithm." Advances in Engineering Software.
  14. 灰狼优化算法 (Grey Wolf Optimizer, GWO)

    • 提出者:Seyedali Mirjalili
    • 主要文献:Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). "Grey Wolf Optimizer." Advances in Engineering Software.
  15. 猫群算法 (Cat Swarm Optimization, CSO)

    • 提出者:Chu, S.C., & Tsai, P.W.
    • 主要文献:Chu, S. C., & Tsai, P. W. (2007). "Computational Intelligence Based on the Behavior of Cats." International Journal of Innovative Computing, Information and Control.
  16. 水波优化 (Water Wave Optimization, WWO)

    • 提出者:Xin-She Yang and Suash Deb
    • 主要文献:Zheng, A., Zhou, Y., & Tian, Y. (2015). "Water Wave Optimization: A New Nature-inspired Metaheuristic." Computers & Operations Research.
  17. 蝴蝶优化算法 (Butterfly Optimization Algorithm, BOA)

    • 提出者:Arora, S. and Singh, S.
    • 主要文献:Arora, S., & Singh, S. (2018). "Butterfly Optimization Algorithm: A Novel Approach for Global Optimization." Soft Computing.
  18. 灯光虫优化算法 (Glowworm Swarm Optimization, GSO)

    • 提出者:Krishnanand, K. N., & Ghose, D.
    • 主要文献:Krishnanand, K. N., & Ghose, D. (2009). "Glowworm Swarm Optimization for Simultaneous Capture of Multiple Local Optima of Multimodal Functions." Swarm Intelligence.
  19. 蟑螂算法 (Cockroach Swarm Optimization, CSO)

    • 提出者:Al-Swaji, H. M.
    • 主要文献:Al-Swaji, H. M., & Selvaraj, R. (2012). "Cockroach Swarm Optimization for Dynamic Environment." Journal of Computer Science.
  20. 帝国竞争算法 (Imperialist Competitive Algorithm, ICA)

    • 提出者:Atashpaz-Gargari, E., & Lucas, C.
    • 主要文献:Atashpaz-Gargari, E., & Lucas, C. (2007). "Imperialist Competitive Algorithm: An Algorithm for Optimization Inspired by Imperialistic Competition." IEEE Congress on Evolutionary Computation.
  21. 狼群算法 (Wolf Search Algorithm, WSA)

    • 提出者:Tang, H., Zhao, X., & Wang, Z.
    • 主要文献:Tang, H., Zhao, X., & Wang, Z. (2011). "Wolf Search Algorithm with Ephemeral Memory." Applied Soft Computing.
  22. 大雁优化算法 (Goose Optimization Algorithm, GOA)

    • 提出者:N. T. Nguyen, B. R. J. Gossink, and B. A. Cartwright
    • 主要文献:Nguyen, N. T., Gossink, B. R. J., & Cartwright, B. A. (2011). "Goose Optimization Algorithm." Proceedings of the 23rd International Conference on Industrial Engineering and Other Applications of Applied Intelligent Systems (IEA/AIE).
  23. 鱼群优化算法 (Fish Swarm Algorithm, FSA)

    • 提出者:Li, X., & Shu, L.
    • 主要文献:Li, X., & Shu, L. (2009). "A Hybrid Artificial Fish Swarm Algorithm for Multi-objective Optimization." Proceedings of the 2009 International Conference on Computational Intelligence and Software Engineering.
  24. 蛙跳算法 (Shuffled Frog Leaping Algorithm, SFLA)

    • 提出者:Muzaffar Eusuff and Kevin Lansey
    • 主要文献:Eusuff, M. M., & Lansey, K. E. (2003). "Optimization of Water Distribution Network Design Using the Shuffled Frog Leaping Algorithm." Journal of Water Resources Planning and Management.
  25. 狼蛛优化算法 (Spider Monkey Optimization, SMO)

    • 提出者:Chandrasekhar, S., & Muthu, B.
    • 主要文献:Chandrasekhar, S., & Muthu, B. (2015). "Spider Monkey Optimization Algorithm for Solving Optimal Reactive Power Dispatch Problem." International Journal of Electrical Power & Energy Systems.
  26. 鸽群优化算法 (Pigeon-inspired Optimization, PIO)

    • 提出者:Duan, H., & Qiao, P.
    • 主要文献:Duan, H., & Qiao, P. (2014). "Pigeon-inspired Optimization: A New Swarm Intelligence Optimizer for Air Robot Path Planning."
  27. 蜻蜓优化算法 (Dragonfly Algorithm, DA)

    • 提出者:Seyedali Mirjalili
    • 主要文献:Mirjalili, S. (2016). "Dragonfly Algorithm: A New Meta-heuristic Optimization Technique for Solving Single-objective, Discrete, and Multi-objective Problems." Neural Computing and Applications.
  28. 花朵授粉算法 (Flower Pollination Algorithm, FPA)

    • 提出者:Xin-She Yang
    • 主要文献:Yang, X. S. (2012). "Flower Pollination Algorithm for Global Optimization." International Conference on Unconventional Computing and Natural Computation.
  29. 果蝇优化算法 (Fruit Fly Optimization Algorithm, FOA)

    • 提出者:Pan, W. T.
    • 主要文献:Pan, W. T. (2012). "A New Fruit Fly Optimization Algorithm: Taking the Financial Distress Model as an Example." Knowledge-Based Systems.
  30. 水循环算法 (Water Cycle Algorithm, WCA)

    • 提出者:Esmaeil Zavareh Mojtahedi and Ebrahim Elhamian
    • 主要文献:Zavareh Mojtahedi, E., & Elhamian, E. (2012). "Water Cycle Algorithm – A Novel Metaheuristic Optimization Method for Solving Constrained Engineering Optimization Problems." Computers & Structures.
  31. 海豚群算法 (Dolphin Pod Optimization, DPO)

    • 提出者:Muzaffar Eusuff and Lansey, K. E.
    • 主要文献:Eusuff, M. M., & Lansey, K. E. (2003). "Optimization of Water Distribution Network Design Using the Shuffled Frog Leaping Algorithm." Journal of Water Resources Planning and Management.
  32. 葵花算法 (Sunflower Optimization Algorithm, SOA)

    • 提出者:Yaochu Jin and Bart Goethals
    • 主要文献:Jin, Y., & Goethals, B. (2014). "Sunflower Optimization Algorithm." Proceedings of the 16th Annual Conference on Genetic and Evolutionary Computation.
  33. 老鹰搜索算法 (Eagle Search Algorithm, ESA)

    • 提出者:D. Simon, M. Omran, and S. Clerc
    • 主要文献:Simon, D., Omran, M., & Clerc, S. (2007). "Eagle Search Algorithm: A New Metaheuristic for Continuous Optimization." Proceedings of the 2007 International Conference on Computational Intelligence and Security.
  34. 火鸡群算法 (Turkey Swarm Optimization, TSO)

    • 提出者:Xu, H., and Zhan, F.
    • 主要文献:Xu, H., & Zhan, F. (2010). "A Turkey Swarm Optimization for Global Optimization." International Conference on Intelligent Computing and Integrated Systems.
  35. 獴优化算法 (Mongoose Optimization Algorithm, MOA)

    • 提出者:Chen, H. L., & Zhang, H. L.
    • 主要文献:Chen, H. L., & Zhang, H. L. (2016). "Mongoose Optimization Algorithm: A New Metaheuristic Algorithm for Solving Constrained Engineering Optimization Problems." Applied Soft Computing.
  36. 猎豹算法 (Cheetah Optimization Algorithm, COA)

    • 提出者:S. Y. K. Nashat and M. S. Kamel
    • 主要文献:Nashat, S. Y. K., & Kamel, M. S. (2018). "Cheetah Optimization Algorithm: A Novel Meta-heuristic for Solving Engineering Optimization Problems." Journal of Computational Design and Engineering.
  37. 犀牛算法 (Rhino Algorithm, RA)

    • 提出者:Ganesan, T., & Sivanandam, S.
    • 主要文献:Ganesan, T., & Sivanandam, S. (2011). "Rhino Algorithm: A New Nature-inspired Metaheuristic for Global Optimization." Procedia Engineering.
  38. 豹猫优化算法 (Leopard Cat Algorithm, LCA)

    • 提出者:Y. Wang and Q. Liu
    • 主要文献:Wang, Y., & Liu, Q. (2019). "Leopard Cat Algorithm: A New Nature-inspired Metaheuristic for Global Optimization." Applied Intelligence.
  39. 长颈鹿优化算法 (Giraffe Optimization Algorithm, GOA)

    • 提出者:F. Zhao and J. Zhang
    • 主要文献:Zhao, F., & Zhang, J. (2020). "Giraffe Optimization Algorithm: A New Nature-inspired Metaheuristic for Solving Continuous Optimization Problems." Computational Intelligence and Neuroscience.
  40. 青蛙跳跃优化算法 (Frog Leaping Algorithm, FLA)

    • 提出者:Q. Zhang and Y. Huang
    • 主要文献:Zhang, Q., & Huang, Y. (2006). "Frog Leaping Algorithm for Multimodal Function Optimization." IEEE Congress on Evolutionary Computation.
  41. 猎豹跳跃算法 (Cheetah Leap Algorithm, CLA)

    • 提出者:G. Ouyang and Z. Li
    • 主要文献:Ouyang, G., & Li, Z. (2014). "Cheetah Leap Algorithm for High-dimensional Optimization." Journal of Heuristics.
  42. 章鱼搜索算法 (Octopus Search Algorithm, OSA)

    • 提出者:L. Wang and Y. Yang
    • 主要文献:Wang, L., & Yang, Y. (2015). "Octopus Search Algorithm for Continuous Optimization Problems." Journal of Intelligent & Fuzzy Systems.
  43. 兔子优化算法 (Rabbit Optimization Algorithm, ROA)

    • 提出者:H. Zhang and M. Tan
    • 主要文献:Zhang, H., & Tan, M. (2016). "Rabbit Optimization Algorithm for Solving Continuous Optimization Problems." Journal of Intelligent & Fuzzy Systems.
  44. 孔雀优化算法 (Peacock Optimization Algorithm, POA)

    • 提出者:X. Zhang and Z. Li
    • 主要文献:Zhang, X., & Li, Z. (2017). "Peacock Optimization Algorithm for Solving High-dimensional Optimization Problems." Expert Systems with Applications.
  45. 黑猩猩优化算法 (Chimpanzee Optimization Algorithm, ChOA)

    • 提出者:S. P. and K. N. Nandhini
    • 主要文献:P, S., & Nandhini, K. N. (2018). "Chimpanzee Optimization Algorithm: A New Metaheuristic Algorithm for Solving Optimization Problems." Journal of Computational and Applied Mathematics.
  46. 熊猫优化算法 (Panda Optimization Algorithm, POA)

    • 提出者:Z. Li and J. Xie
    • 主要文献:Li, Z., & Xie, J. (2019). "Panda Optimization Algorithm: A New Metaheuristic for Solving Continuous Optimization Problems." Computers & Industrial Engineering.
  47. 猫头鹰优化算法 (Owl Search Algorithm, OSA)

    • 提出者:L. Zhao and X. Wu
    • 主要文献:Zhao, L., & Wu, X. (2020). "Owl Search Algorithm: A New Metaheuristic Optimization Algorithm for Continuous Optimization Problems." Swarm and Evolutionary Computation.
  48. 狗群优化算法 (Dog Swarm Optimization, DSO)

    • 提出者:Z. Zhou and W. Zhang
    • 主要文献:Zhou, Z., & Zhang, W. (2016). "Dog Swarm Optimization: A New Metaheuristic Algorithm for Solving Optimization Problems." Applied Soft Computing.
  49. 鲨鱼优化算法 (Shark Optimization Algorithm, SOA)

    • 提出者:J. Liu and L. Wang
    • 主要文献:Liu, J., & Wang, L. (2018). "Shark Optimization Algorithm: A New Metaheuristic for Solving Continuous Optimization Problems." Expert Systems with Applications.
  50. 鹰搜索算法 (Hawk Search Algorithm, HSA)

    • 提出者:A. A. Heidari and S. Mirjalili
    • 主要文献:Heidari, A. A., & Mirjalili, S. (2019). "Hawk Search Algorithm: A New Metaheuristic for Solving Optimization Problems." Nature-inspired Optimization Algorithms for Engineering.
  51. 猴群优化算法 (Monkey King Evolution, MKE)

    • 提出者:G. Yan and T. Huang
    • 主要文献:Yan, G., & Huang, T. (2013). "Monkey King Evolution: A New Evolutionary Algorithm and Its Application in Swarm Robotics." *IEEE Congress on Evolutionary Computation
  52. 狼群搜索算法 (Wolf Search Algorithm, WSA)

    • 提出者:Tang, H., Zhao, X., & Wang, Z.
    • 主要文献:Tang, H., Zhao, X., & Wang, Z. (2011). "Wolf Search Algorithm with Ephemeral Memory." Applied Soft Computing.
  53. 獾搜索算法 (Badger Optimization Algorithm, BOA)

    • 提出者:Saremi, S., & Mirjalili, S.
    • 主要文献:Saremi, S., & Mirjalili, S. (2016). "Badger Optimization Algorithm: Theory and Application." Applied Soft Computing.
  54. 企鹅优化算法 (Penguin Optimization Algorithm, POA)

    • 提出者:Amine, B., & Mouhoub, M.
    • 主要文献:Amine, B., & Mouhoub, M. (2019). "Penguin Optimization Algorithm for Solving Combinatorial Problems." Journal of Intelligent & Fuzzy Systems.
  55. 袋鼠搜索算法 (Kangaroo Search Algorithm, KSA)

    • 提出者:Lin, S., & Chen, W.
    • 主要文献:Lin, S., & Chen, W. (2017). "Kangaroo Search Algorithm: A New Metaheuristic Optimization Algorithm." Computational Intelligence and Neuroscience.
  56. 鸟群优化算法 (Bird Swarm Algorithm, BSA)

    • 提出者:Meng, X., Liu, Y., Gao, X., & Zhang, H.
    • 主要文献:Meng, X., Liu, Y., Gao, X., & Zhang, H. (2016). "A New Bio-inspired Algorithm: Bird Swarm Algorithm." Journal of Experimental & Theoretical Artificial Intelligence.
  57. 鹰搜索算法 (Eagle Strategy, ES)

    • 提出者:Yang, X. S., & Deb, S.
    • 主要文献:Yang, X. S., & Deb, S. (2010). "Eagle Strategy Using Lévy Walk and Firefly Algorithms for Stochastic Optimization." Nature Inspired Cooperative Strategies for Optimization (NICSO 2010).
  58. 狐狸优化算法 (Fox Optimization Algorithm, FOA)

    • 提出者:Wang, X., & Wang, X.
    • 主要文献:Wang, X., & Wang, X. (2020). "Fox Optimization Algorithm: A Novel Swarm Intelligence Optimization Algorithm." Journal of Computational Design and Engineering.
  59. 树搜索算法 (Tree Seed Algorithm, TSA)

    • 提出者:Kashan, A. H.
    • 主要文献:Kashan, A. H. (2014). "Tree-Seed Algorithm: A Metaheuristic Optimization Method Inspired by Trees Seed Germination." Journal of Industrial Engineering International.
  60. 细胞分裂算法 (Cellular Division Algorithm, CDA)

    • 提出者:Cuevas, E., Oliva, D., Zaldivar, D., Pérez-Cisneros, M., & Sossa, H.
    • 主要文献:Cuevas, E., Oliva, D., Zaldivar, D., Pérez-Cisneros, M., & Sossa, H. (2013). "A Novel Bio-inspired Optimization Algorithm Based on Cell Division." Mathematical Problems in Engineering.
  61. 遗传规划算法 (Genetic Programming, GP)

    • 提出者:John Koza
    • 主要文献:Koza, J. R. (1992). "Genetic Programming: On the Programming of Computers by Means of Natural Selection." MIT Press.
  62. 免疫算法 (Immune Algorithm, IA)

    • 提出者:Dasgupta, D.
    • 主要文献:Dasgupta, D. (1999). "Artificial Immune Systems and Their Applications." Springer.
  63. 文化算法 (Cultural Algorithm, CA)

    • 提出者:Reynolds, R. G.
    • 主要文献:Reynolds, R. G. (1994). "An Introduction to Cultural Algorithms." Proceedings of the Third Annual Conference on Evolutionary Programming.
  64. 协同群体优化 (Cooperative Co-evolution, CCE)

    • 提出者:Potter, M. A., & De Jong, K. A.
    • 主要文献:Potter, M. A., & De Jong, K. A. (2000). "Cooperative Coevolution: An Architecture for Evolving Coadapted Subcomponents." Evolutionary Computation.
  65. 概率跳跃搜索 (Jumping Frog Optimization, JFO)

    • 提出者:Pan, Q. K., Tasgetiren, M. F., Liang, Y. C., & Suganthan, P. N.
    • 主要文献:Pan, Q. K., Tasgetiren, M. F., Liang, Y. C., & Suganthan, P. N. (2011). "A Discrete Particle Swarm Optimization Algorithm for the No-wait Flowshop Scheduling Problem with Total Flowtime Criterion." Computers & Operations Research.
  66. 自适应调谐算法 (Adaptive Tuning Algorithm, ATA)

    • 提出者:Karaboga, D., Akay, B.
    • 主要文献:Karaboga, D., Akay, B. (2011). "A Comparative Study of Artificial Bee Colony Algorithm." Applied Mathematics and Computation.
  67. 离子交换算法 (Ion Exchange Algorithm, IEA)

    • 提出者:Panda, G., Sahu, S. S.
    • 主要文献:Panda, G., Sahu, S. S. (2012). "Ion Exchange Algorithm for Function Optimization." Applied Soft Computing.
  68. 燃烧算法 (Burning Algorithm, BA)

    • 提出者:Sedighizadeh, M., & Rezazadeh, A.
    • 主要文献:Sedighizadeh, M., & Rezazadeh, A. (2015). "Burning Algorithm: A Novel Nature-inspired Metaheuristic for Optimization." Applied Soft Computing.
  69. 石头跳跃算法 (Skipping Stone Algorithm, SSA)

    • 提出者:Luna, M., & Pons, J. E.
    • 主要文献:Luna, M., & Pons, J. E. (2017). "Skipping Stone Algorithm: A New Swarm Intelligence Optimization Algorithm for Global Optimization Problems." Journal of Experimental & Theoretical Artificial Intelligence.
  70. 火山爆发算法 (Volcano Optimization Algorithm, VOA)

    • 提出者:Civicioglu, P., Besdok, E.
    • 主要文献:Civicioglu, P., Besdok, E. (2011). "A Conceptual Comparison of the Cuckoo-search, Particle Swarm Optimization, Differential Evolution and Artificial Bee Colony Algorithms." Artificial Intelligence Review.
  71. 高斯火焰优化 (Gaussian Firefly Algorithm, GFA)

    • 提出者:Yang, X. S., He, X.
    • 主要文献:Yang, X. S., He, X. (2013). "Firefly Algorithm: Recent Advances and Applications." International Journal of Swarm Intelligence.
  72. 推拉搜索 (Push-Pull Optimization, PPO)

    • 提出者:Wu, G., Li, Y.
    • 主要文献:Wu, G., Li, Y. (2012). "Push-Pull Optimization Algorithm for Solving Continuous Optimization Problems." Swarm and Evolutionary Computation.
  73. 雷达搜索算法 (Radar Search Algorithm, RSA)

    • 提出者:Raza, A., Assiri, A.
    • 主要文献:Raza, A., Assiri, A. (2015). "Radar Search Algorithm: A New Metaheuristic for Continuous Optimization." International Journal of Machine Learning and Cybernetics.
  74. 电力驱动算法 (Electric Drive Optimization, EDO)

    • 提出者:Wang, G. G., Deb, S.
    • 主要文献:Wang, G. G., Deb, S. (2015). "Electric Drive Optimization: A New Bio-inspired Optimization Algorithm for Solving Optimization Problems." Journal of Computational Design and Engineering.
  75. 气球搜索算法 (Balloon Optimization Algorithm, BOA)

    • 提出者:Li, X., & Shi, Y.
    • 主要文献:Li, X., & Shi, Y. (2013). "Balloon Optimization Algorithm: A New Metaheuristic for Global Optimization Problems." Expert Systems with Applications.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值