单目标优化算法:遗传算法

本文介绍了智能优化算法在解决复杂问题中的应用,包括遗传算法、粒子群优化和多目标优化算法如NSGA-II。这些算法常用于处理无法直接解析的目标函数或约束条件。重点讨论了如何将问题转化为最小值问题,并强调了目标函数、决策变量和约束条件在优化过程中的关键作用。此外,还探讨了优化算法在黑箱问题中的适用性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.单目标优化:遗传算法(物竞天择,适者生存)
2.单目标优化:粒子群算法(鸟类找食物)
3.多目标优化:NSGA-II算法
4.多目标优化:多目标粒子群算法
5.优化工具箱及实战案例分析

规划问题:有明确的表达式,可以解出来
智能优化算法:没有准确的目标函数或者说我们很难通过线性规划或者0-1规划求解的问题。

单目标优化算法:遗传算法
优化:是应用数学的一个分支,主要研究在特定情况下最大化或最小化某一特定函数。
做法:调整你已经建立好的模型的参数->先有一个模型,后套用优化方法
适用:黑箱问题
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

目标函数、决策变量、约束条件!!重要
优化算法:一定最好转化成求最小值的问题。最大值取倒数

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

待更新…

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值