图像处理中的椭圆拟合(一)

本文探讨了图像处理中椭圆检测的重要性,并介绍了使用随机Hough变换进行椭圆拟合的方法。尽管该方法在处理样本点分布均匀时效果良好,但在样本点集中于椭圆一侧时会出现误差。通过分析,发现误差源于坐标精度低,提出增加采样点数并采用最小二乘法以提高拟合精度。实验结果显示,采样点越多,拟合效果越佳。
摘要由CSDN通过智能技术生成

        图像处理中的椭圆检测用处还是挺多的,找到这里来的同学大多是想用椭圆检测来解决某些实际问题吧,所以我就不做介绍,直奔主题。我研究这块也有一段时间了,也查找了挺多资料,貌似通用的椭圆算法还没有,不排除我孤陋寡闻了。前辈提出的算法适用范围比较有限,这个比较有限是相对直线检测来说的。但直接用Hough变换来找椭圆几乎是不可能的事,在5维空间里做投票,想想都觉得可怕。于是有人想到用随机Hough变换。这是一种很合理的方法,我就是这么做的,不过这种方法有个不足之处,后面会讲到。这里先介绍这方法的流程。

        二次曲线的一般方程为:,其中(x,y)为图像的坐标空间,BCDEF是二次曲线的参数。当满足

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值