题意:
哥德巴赫猜想,一个偶数一定能化为两个质数的乘积。
思路:
练习了一下筛法求素数,不用写不成立的情况,因为目前还没有找出反例。
代码实现:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
using namespace std;
const int MAX = 1000005;
int N;
int cnt;
bool flag;
int prime[MAX/2];
bool is_prime[MAX];
void sieve();
int main()
{
sieve();
while( scanf("%d",&N) != EOF ){
if( N == 0 ){
break;
}
flag = false;
for( int i = 0; i < cnt; i++ ){
int a = prime[i];
int b = N-a;
if( is_prime[b] == true ){
flag = true;
printf("%d = %d + %d\n",N,a,b);
break;
}
}
}
return 0;
}
void sieve(){
cnt = 0;
for( int i = 0; i < MAX; i++ ){
is_prime[i] = true;
}
for( int i = 2; i < MAX; i++ ){
if( is_prime[i] == true ){
prime[cnt++] = i;
for( int j = 2*i; j < MAX; j += i ){
is_prime[j] = false;
}
}
}
return ;
}