机器学习K-Means及DBSCAN聚类算法的python代码

这篇博客介绍了如何使用Python实现K-Means和DBSCAN两种聚类算法。首先,通过读取城市经纬度数据应用K-Means算法,然后展示了层次聚类的替代实现。接着,文章转向DBSCAN密度聚类算法,并对数据进行归一化处理,最后通过可视化展示聚类结果。
摘要由CSDN通过智能技术生成
### K-Means  (AgglomerativeClustering 为层次聚类使用,相应两行被替换)  向量距离聚类
#coding=utf-8
import numpy as np
import matplotlib.pyplot as plt
#from sklearn.cluster import KMeans
from sklearn.cluster import AgglomerativeClustering
#读取城市经纬度数据
X = []
f = open('files\\city.csv')
for v in f:
    X.append([float(v.split(',')[2]),float(v.split(',')[3])])
#转换成numpy array
X = np.array(X)
#类簇的数量 - kmeans算法的参数
n_clusters = 5
#进行聚类
cls = KMeans(n_clusters).fit(X)
#cls = AgglomerativeClustering(linkage='ward',n_clusters=n_clusters).fit(X)
#聚类结果列表
cls.labels_
#画图
markers = ['^','x','o','*','+']
for i in range(n_clusters):
    members = cls.labels_ == i
    plt.scatter(X[members,0],X[members,1], s=60, marker=markers[i],c='b',alpha=0.5)
#print(members)
#print(X[members,1])
plt.title('')
plt.show()


### DBScan算法  密度聚类
#codi
### 回答1: DBSCAN是一种密度聚类算法,可以通过Python代码实现。以下是一个使用Python实现DBSCAN算法的示例代码: ```python from sklearn.cluster import DBSCAN from sklearn import datasets import matplotlib.pyplot as plt # 导入数据集 iris = datasets.load_iris() X = iris.data # 构建DBSCAN聚类模型 dbscan = DBSCAN(eps=0.4, min_samples=5) dbscan.fit(X) # 打印聚类标签 print("聚类标签: ", dbscan.labels_) # 绘制聚类结果 colors = ['b', 'g', 'r', 'c', 'm', 'y', 'k'] for i in range(len(X)): plt.scatter(X[i][0], X[i][1], c=colors[dbscan.labels_[i]]) plt.show() ``` 在这个示例中,我们使用Scikit-learn库中的DBSCAN模块进行聚类。首先,我们从Scikit-learn库中导入DBSCAN和数据集。然后,我们设置聚类模型的超参数,包括eps和min_samples。接下来,我们使用模型拟合数据,并打印每个点的聚类标签。最后,我们使用Matplotlib库绘制数据点和聚类结果。 ### 回答2: DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种基于密度的聚类算法,它能够发现任意形状的聚类簇,并且可以自动识别出噪声点。 以下是一个DBSCAN聚类算法Python代码示例: ```python import numpy as np from sklearn.cluster import DBSCAN from sklearn.datasets import make_moons import matplotlib.pyplot as plt # 生成用于聚类的样本数据(示例数据) X, _ = make_moons(n_samples=200, noise=0.05, random_state=0) # 初始化DBSCAN聚类dbscan = DBSCAN(eps=0.3, min_samples=5) # 执行聚类 labels = dbscan.fit_predict(X) # 绘制聚类结果 unique_labels = set(labels) colors = [plt.cm.Spectral(each) for each in np.linspace(0, 1, len(unique_labels))] for k, col in zip(unique_labels, colors): if k == -1: # 噪声点(标签为-1)用黑色表示 col = [0, 0, 0, 1] class_member_mask = (labels == k) xy = X[class_member_mask] plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col), markeredgecolor='k', markersize=6) plt.title('DBSCAN Clustering') plt.show() ``` 上述代码首先使用 `make_moons` 函数生成了一个样本数据集(只包含特征数据)。然后,使用 `DBSCAN` 类初始化了一个DBSCAN聚类器,将 `eps` 参数设置为0.3(表示两个样本之间的最大距离)和 `min_samples` 参数设置为5(表示核心样本的最小数量)。接下来,使用 `fit_predict` 方法执行聚类,返回每个样本的所属聚类簇标签(包括噪声点,标签为-1)。最后,根据聚类结果使用不同颜色绘制样本数据的散点图。 这段代码的作用是通过DBSCAN算法对于样本数据进行聚类,并使用散点图可视化聚类结果。 ### 回答3: DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种经典的聚类算法,用于对具有高密度区域和低密度区域的数据进行聚类。下面是一个用Python实现DBSCAN聚类算法的示例代码: ```python import numpy as np from sklearn.cluster import DBSCAN # 创建样本数据 X = np.array([[1, 2], [1, 4], [1, 0], [4, 2], [4, 4], [4, 0], [7, 2], [7, 4], [7, 0]]) # 创建DBSCAN聚类模型 dbscan = DBSCAN(eps=2, min_samples=2) # 进行聚类 labels = dbscan.fit_predict(X) # 打印每个样本的聚类结果 for i in range(len(X)): print("样本", X[i], "聚类结果:", labels[i]) ``` 在这个示例中,我们首先创建了一个样本数据矩阵X,其中每行表示一个样本。接下来,我们使用`DBSCAN()`函数创建了一个DBSCAN聚类模型。`eps`参数用于指定邻域的半径大小,`min_samples`参数用于指定一个核心点所需的最小邻域样本数。然后,我们调用模型的`fit_predict()`方法对样本进行聚类,并将聚类结果存储在`labels`变量中。最后,我们遍历每个样本,并打印其聚类结果。 需要注意的是,以上代码中使用的是`sklearn`库中的`DBSCAN`类来实现DBSCAN算法。该类提供了丰富的参数和方法,可以根据需要进行调整和使用。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值