Python实现DBSCAN膨胀聚类模型(DBSCAN算法)项目实战

416 篇文章 281 订阅

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。

1.项目背景

DBSCAN(Density-Based Spatial Clustering of Applications with Noise,具有噪声的基于密度的聚类方法)是一种基于密度的空间聚类算法。该算法将具有足够密度的区域划分为簇,并在具有噪声的空间数据库中发现任意形状的簇,DBSCAN算法将“簇”定义为密度相连的点的最大集合。

DBSCAN算法是密度聚类算法,所谓密度聚类算法就是说这个算法是,根据样本的紧密程度来进行聚类。

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:

数据详情如下(部分展示):

部分数据展示:

3.数据预处理

3.1 用Pandas工具查看数据

使用Pandas工具的head()方法查看前五行数据:

 

从上图可以看到,总共有7个字段。

关键代码:

3.2缺失值统计

使用Pandas工具的info()方法统计每个特征缺失情况:

从上图可以看到,数据不存在缺失值,总数据量为1000条。

关键代码:

3.3变量描述性统计分析

通过Pandas工具的describe()方法来来统计变量的平均值、标准差、最大值、最小值、分位数等信息:

关键代码如下:

4.探索性数据分析

4.1.绘制散点图

通过Matplotlib工具针对x1 x2两个特征绘制分类散点图,如下图所示:

4.2 相关性分析

通过Pandas工具的corr()方法和seaborn工具的heatmap()方法绘制相关性热力图:

从图中可以看到,正数为正相关,负数为负相关,绝对值越大相关性越强。

5.特征工程

5.1 建立特征数据和标签数据

y为标签数据,除y之外的为特征数据。关键代码如下:

 

5.2 数据标准化

sklearn包下的StandardScaler函数进行特征数据的标准化,关键代码如下:

 

6.构建聚类模型

主要使用DBSCAN聚类算法,用于目标聚类分析。

6.1 建立DBSCAN聚类模型

6.2 获取聚类类别数和噪声样本数

 

关键代码如下:

7.模型评估

7.1评估指标及结果

评估指标主要包括聚类结果同质性、完整性、调和平均值、调整的兰德系数、互信息、轮廓系数等等。

 通过上表可以看到,整体的模型效果良好。

7.2 聚类结果可视化

从上图可以看到,聚成了3类,黑色的点代表有噪声的聚类标签样本。

8.结论与展望

综上所述,本项目采用DBSCAN聚类算法进行聚类,最终证明了我们提出的模型效果良好,可用于日常生活中进行建模预测,以提高生产价值。


# 本次机器学习项目实战所需的资料,项目资源如下:

链接:https://pan.baidu.com/s/1TyMNQbTFJMgfjB1IlBHekA 
提取码:81hc






# 用Pandas工具查看数据
print(data.head())

# 数据缺失值统计
print('****************************************')
print(data.info())

print('****************************************')
print(data.describe().round(4))  # 保留4位小数点

# 可视化特征数据集:绘制散点图
plt.scatter(data['x1'].values, data['x2'].values, c=data['y'].values, s=50, cmap="rainbow")  # rainbow彩虹色
plt.xticks([])  # 空列表 不显示x轴刻度
plt.yticks([])  # 空列表 不显示y轴刻度
plt.show()

# 数据的相关性分析
plt.rcParams['font.sans-serif'] = ['SimHei']  # 指定默认字体
plt.rcParams['axes.unicode_minus'] = False  # 解决保存图像是负号'-'显示为方块的问题


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张陈亚

您的鼓励,将是我最大的坚持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值