BFS与DFS
BFS 的把问题抽象成图,从一个点开始,向四周开始扩散。一般来说,我们写 BFS算法都是用「队列」这种数据结构,每次将一个节点周围的所有节点加入队列。
BFS 相对 DFS 的最主要的区别是:BFS 找到的路径一定是最短的,但代价就是空间复杂度比 DFS大很多。
bfs模板(来自LABULADONG的算法小抄)
// 计算从起点 start 到终点 target 的最近距离
int BFS(Node start, Node target) {
Queue<Node> q; // 核心数据结构 队列
Set<Node> visited; // 避免走回头路
q.push(start); // 将起点加入队列
visited.add(start);
int step = 0; // 记录扩散的步数
while (!q . empty()) {
int sz = q.size();
/* 将当前队列中的所有节点向四周扩散 */
for (int i = 0; i < sz; i++) {
Node cur = q.front();
q.pop();//用完就丢
/* 划重点:这里判断是否到达终点 */
if (cur is target)
return step;
/* 将 cur 的相邻节点加入队列 */
for (Node x : cur.adj())
if (x not in visited) {
q.push(x);
visited.add(x);
}
}
/* 划重点:更新步数在这里 */
step++;
}
}
leetcode111. 二叉树的最小深度
给定一个二叉树,找出其最小深度。
最小深度是从根节点到最近叶子节点的最短路径上的节点数量。
说明:叶子节点是指没有子节点的节点。
示例 1:
输入:root = [3,9,20,null,null,15,7]
输出:2
示例 2:
输入:root = [2,null,3,null,4,null,5,null,6]
输出:5
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
int minDepth(TreeNode* root) {
if(root==nullptr)
{
return 0;
}
queue<TreeNode*> q;
q.push(root);
int depth=1;
while(!q.empty())
{
int size=q.size();
for(int i=0;i<size;i++)
{
TreeNode *cur=q.front();//用一个丢一个,先进先出
q.pop();
if(cur->left==nullptr&&cur->right==nullptr)//结束搜索时机
{
return depth;
}
if(cur->left)//
{q.push(cur->left);
}
if(cur->right)
{q.push(cur->right);
}
}
depth++;//注意每一轮的深度是一样的,一轮结束后再增加深度
}
return depth;
}
};
leetcode752. 打开转盘锁
你有一个带有四个圆形拨轮的转盘锁。每个拨轮都有10个数字: ‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’, ‘9’ 。每个拨轮可以自由旋转:例如把 ‘9’ 变为 ‘0’,‘0’ 变为 ‘9’ 。每次旋转都只能旋转一个拨轮的一位数字。
锁的初始数字为 ‘0000’ ,一个代表四个拨轮的数字的字符串。
列表 deadends 包含了一组死亡数字,一旦拨轮的数字和列表里的任何一个元素相同,这个锁将会被永久锁定,无法再被旋转。
字符串 target 代表可以解锁的数字,你需要给出解锁需要的最小旋转次数,如果无论如何不能解锁,返回 -1 。
示例 1:
输入:deadends = [“0201”,“0101”,“0102”,“1212”,“2002”], target = “0202”
输出:6
解释:
可能的移动序列为 “0000” -> “1000” -> “1100” -> “1200” -> “1201” -> “1202” -> “0202”。
注意 “0000” -> “0001” -> “0002” -> “0102” -> “0202” 这样的序列是不能解锁的,
因为当拨动到 “0102” 时这个锁就会被锁定。
示例 2:
输入: deadends = [“8888”], target = “0009”
输出:1
解释:
把最后一位反向旋转一次即可 “0000” -> “0009”。
示例 3:
输入: deadends = [“8887”,“8889”,“8878”,“8898”,“8788”,“8988”,“7888”,“9888”], target = “8888”
输出:-1
解释:
无法旋转到目标数字且不被锁定。
示例 4:
输入: deadends = [“0000”], target = “8888”
输出:-1
本题关键:
1.将死亡节点也看作已走过不可再走的节点 记录在used中
2.用string 类型将一个密码看作整体而非用char+for循环对每个字符做bfs这样无法处理死亡节点。
class Solution {
public:
int openLock(vector<string>& deadends, string target)
{ queue<string> q;
unordered_map <string,bool> used(false);//记录已经走过的路径
for(int i=0;i<deadends.size();i++)
{
used[deadends[i]]=true;
}
q.push("0000");
int step=0;
while(!q.empty())
{
int size=q.size();
for(int j=0;j<size;j++)
{
string curr=q.front();
q.pop();
if(curr==target)//结束条件,找到最短路径
return step;
if(used[curr]==true)//遇到已经走过的或者不能走的路,跳过
continue;
used[curr]=true;
for(int i=0;i<4;i++)//将curr链接的左节点加入队列
{
string now=ChangeL(curr,i);
q.push(now);
}
for(int i=0;i<4;i++)//将curr链接的右节点加入队列
{
string now=ChangeR(curr,i);
q.push(now);
}
}
step++;
}
return -1;
}
string ChangeL(string curr,int i)
{
if(curr[i]=='0')
curr[i]='9';
else
curr[i]=curr[i]-1;
return curr;
}
string ChangeR(string curr,int i)
{
if(curr[i]=='9')
curr[i]='0';
else
curr[i]=curr[i]+1;
return curr;
}
};
网格dfs模版
0 —— 海洋格子
1 —— 陆地格子(未遍历过)
2 —— 陆地格子(已遍历过)
void dfs(vector<vector<char>>& grid, int r, int c) {
//判断 base case {
// 判断 base case
if (!inArea(grid, r, c)) {//如果不在网格之中,直接返回
return;
}
//去除重复点与不合法点
if (grid[r][c] = ****) {/
return;
}
//避免重复:
grid[r][c] = ****; // 将格子标记为「已遍历过」
// 访问上、下、左、右四个相邻结点
dfs(grid, r - 1, c);
dfs(grid, r + 1, c);
dfs(grid, r, c - 1);
dfs(grid, r, c + 1);
}
// 判断坐标 (r, c) 是否在网格中
boolean inArea(vector<vector<char>>& grid, int r, int c) {
return 0 <= r && r < grid.length
&& 0 <= c && c < grid[0].length;
}
作者:nettee
链接:https://leetcode-cn.com/problems/number-of-islands/solution/dao-yu-lei-wen-ti-de-tong-yong-jie-fa-dfs-bian-li-/
来源:力扣(LeetCode)
岛屿问题
leetcode200 岛屿数量
给你一个由 ‘1’(陆地)和 ‘0’(水)组成的的二维网格,请你计算网格中岛屿的数量。
岛屿总是被水包围,并且每座岛屿只能由水平方向和/或竖直方向上相邻的陆地连接形成。
此外,你可以假设该网格的四条边均被水包围。
示例 1:
输入:grid = [
[“1”,“1”,“1”,“1”,“0”],
[“1”,“1”,“0”,“1”,“0”],
[“1”,“1”,“0”,“0”,“0”],
[“0”,“0”,“0”,“0”,“0”]
]
输出:1
示例 2:
输入:grid = [
[“1”,“1”,“0”,“0”,“0”],
[“1”,“1”,“0”,“0”,“0”],
[“0”,“0”,“1”,“0”,“0”],
[“0”,“0”,“0”,“1”,“1”]
]
输出:3
class Solution {
public:
int numIslands(vector<vector<char>>& grid) {
int ans=0;
for(int i=0;i<grid.size();i++)
{
for(int j=0;j<grid[0].size();j++)
{
if(grid[i][j]=='1')
{
dfs(grid,i,j);
ans++;
}
}
}
return ans;
}
void dfs (vector<vector<char>> &grid,int i,int j)
{
if(!(0<=i&&0<=j&&i<grid.size()&&j<grid[0].size()))
return ;
if(grid[i][j]!='1')
return;
grid[i][j]='2';//标记已经搜索过的点
dfs(grid,i-1,j);
dfs(grid,i+1,j);
dfs(grid,i,j-1);
dfs(grid,i,j+1);
}
};
leetcode 463. 岛屿的周长
给定一个 row x col 的二维网格地图 grid ,其中:grid[i][j] = 1 表示陆地, grid[i][j] = 0 表示水域。
网格中的格子 水平和垂直 方向相连(对角线方向不相连)。整个网格被水完全包围,但其中恰好有一个岛屿(或者说,一个或多个表示陆地的格子相连组成的岛屿)。
岛屿中没有“湖”(“湖” 指水域在岛屿内部且不和岛屿周围的水相连)。格子是边长为 1 的正方形。网格为长方形,且宽度和高度均不超过 100 。计算这个岛屿的周长。
class Solution {
public:
int islandPerimeter(vector<vector<int>>& grid) {
for(int i=0;i<grid.size();i++)
{
for(int j=0;j<grid[0].size();j++)
{
if(grid[i][j]==1)
return bfs(grid,i,j);
}
}
return 0;
}
int bfs(vector<vector<int>> &grid,int i,int j)
{
if(!(0 <= i && i < grid.size() && 0 <= j && j < grid[0].size()))
return 1;
if(grid[i][j]==0)
return 1;
if(grid[i][j]!=1)
return 0;
grid[i][j]=2;
return (bfs(grid,i+1,j)+bfs(grid,i-1,j)+bfs(grid,i,j+1)+bfs(grid,i,j-1));
}
};
leetcode695 岛屿最大面积
给定一个包含了一些 0 和 1 的非空二维数组 grid,一个岛屿是一组相邻的 1(代表陆地),这里的「相邻」要求两个 1 必须在水平或者竖直方向上相邻。你可以假设 grid 的四个边缘都被 0(代表海洋)包围着。
找到给定的二维数组中最大的岛屿面积。如果没有岛屿,则返回面积为 0 。
class Solution {
public:
int maxAreaOfIsland(vector<vector<int>>& grid) {
int ans=0;
int ma=0;
for(int i=0;i<grid.size();i++)
{
for(int j=0;j<grid[0].size();j++)
{
if(grid[i][j]==1)
{
ma=dfs(grid,i,j);
ans=max(ma,ans);
}
}
}
return ans;
}
int dfs(vector<vector<int>>& grid,int i,int j)
{
if(!(i>=0&&j>=0&&i<grid.size()&&j<grid[0].size()))
return 0;
if(grid[i][j]!=1)
return 0;
grid[i][j]=2;
return 1+dfs(grid,i-1,j)+dfs(grid,i+1,j)+dfs(grid,i,j-1)+dfs(grid,i,j+1);//每次搜索到一个陆地时就把它面积+1;不能用if return这样在搜到第一个陆地时就停止了
}
};
普通dps
leetcode 22. 括号生成
数字 n 代表生成括号的对数,请你设计一个函数,用于能够生成所有可能的并且 有效的 括号组合。
有效括号组合需满足:左括号必须以正确的顺序闭合。
示例 1:
输入:n = 3
输出:["((()))","(()())","(())()","()(())","()()()"]
示例 2:
输入:n = 1
输出:["()"]
class Solution {
public:
vector<string> ans;
string path;
vector<string> generateParenthesis(int n) {
backtracking(n,0,0);
return ans;
}
void backtracking(int n,int r,int l)
{
if(path.length()==n*2)//退出条件
{
ans.push_back(path);
return;
}
//每层遍历
if(r<l)
{
path.push_back(')');
r=r+1;
backtracking(n,r,l);
path.pop_back();
r=r-1;
}
if(l<n)
{
path.push_back('(');
l=l+1;
backtracking(n,r,l);
path.pop_back();
l=l-1;
}
}
};