【小样本图像分割-3】HyperSegNAS: Bridging One-Shot Neural Architecture Search

【小样本图像分割-3】HyperSegNAS: Bridging One-Shot Neural Architecture Search with 3D Medical Image Segmentation using HyperNet

image-20240817152943882

今天分享的文章来自CVPR2022,是用作NAS(神经网络结构搜索)来做3D医学图像分割的一篇论文,这边论文用的NAS技术在之前火过一段时间,但是从我所知实际使用的地方不多,相对比较冷门,并且神经网络搜索相对而言需要大量的资源,成本也比较高。神经网络结构搜索(NAS)通过利用机器学习算法和搜索策略,自动发现更加高效和优化的神经网络结构。这一过程涉及对神经网络的拓扑结构、层数、节点连接方式等进行搜索和优化,以获得在给定任务上性能最佳的神经网络模型。NAS能够显著减少人工设计神经网络所需的时间和精力,提高模型设计的效率和效果。

文章的地址:[2112.10652] HyperSegNAS: Bridging One-Shot Neural Architecture Search with 3D Medical Image Segmentation using HyperNet (arxiv.org)

代码的地址:没有提供对应的代码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

肆十二

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值