从一道easy leetcode问题,谈谈最大子列和的Kadane算法
https://blog.csdn.net/the__apollo/article/details/77367534
121. Best Time to Buy and Sell Stock
这两道题目很有相似的地方,通过转换都可以变形为Kadane算法的题目
给一个数组,然后算这个数组中最大子串的和。
O(n) 时间复杂度,也就是一次遍历
不要被这个子串迷惑了,
class Solution {
public:
int maxSubArray(vector<int>& nums) {
int res = INT_MIN;
int cur = 0;
for (auto it = nums.cbegin(); it != nums.cend(); ++it)
{
cur = std::max(*it + cur, *it);
res = std::max(res, cur);
}
return res;
}
};
Runtime: 12 ms, faster than 91.71% of C++ online submissions for Maximum Subarray.
Memory Usage: 10.4 MB, less than 42.16% of C++ online submissions for Maximum Subarray.
还有一种解法,就是动态规划,记录下每次前N个值中最大的子串,比较当前值与上一个dp[i-1]与0的最大值的和,作为dp[i]。
内存占用比较高,但是比较快
// 53. Maximum Subarray
int Solution::maxSubArray(vector<int> & nums)
{
vector<int> dp;
dp.push_back(nums[0]); // 保存前n个值,每个子段的最大值
int max = dp[0];
for (int i = 1; i < nums.size();++i)
{
int t = nums[i] + (dp[i - 1] > 0 ? dp[i - 1] : 0); // 为啥跟0去比较?需要理解0这个值的含义,+0 -0 都不会变
dp.push_back(t);
max = std::max(t, max);
}
return max;
}
Runtime: 12 ms, faster than 91.71% of C++ online submissions for Maximum Subarray.
Memory Usage: 10.8 MB, less than 5.15% of C++ online submissions for Maximum Subarray.