【LeetCode】53. Maximum Subarray

53. Maximum Subarray

Description:
Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.
Difficulty:Easy
Example:

Input: [-2,1,-3,4,-1,2,1,-5,4],
Output: 6
Explanation: [4,-1,2,1] has the largest sum = 6.

Follow up:
If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.

方法1:Dynamic Programming

  • Time complexity : O(n)O\left ( n \right )
  • Space complexity : O(1)O\left ( 1 \right )
    思路:
    回忆一下动态规划的四个步骤:
    1、描述优解的结构特征。
    2、递归地定义一个最优解的值。
    3、自底向上计算一个最优解的值。
    4、从已计算的信息中构造一个最优解。
    核心是找到子问题的结构
    如果将子问题分解成maxSubArray(int A[], int i, int j),很难找到子问题和原问题的关系
    换个分解方式maxSubArray(int A[], int i),子问题和原问题的关系如下
    maxSubArray(A, i) = maxSubArray(A, i - 1) > 0 ? maxSubArray(A, i - 1) : 0 + A[i];
// 第一版, 写的不优雅,比较烂
class Solution {
public:
    int maxSubArray(vector<int>& nums) {
		int max_sum = INT_MIN;
		int temp_sum = 0;
		for (int i = 0; i < nums.size(); i++) {
			temp_sum += nums[i];
			if (temp_sum > max_sum)
				max_sum = temp_sum;
			if (temp_sum <= 0)
				temp_sum = 0;
		}
		return max_sum;
    }
};
// 第二版, 优化版
class Solution {
public:
    int maxSubArray(vector<int>& nums) {
		int max_sum = INT_MIN;
		int temp_sum = 0;
		for (int i = 0; i < nums.size(); i++) {
			temp_sum = nums[i] + (temp_sum > 0 ? temp_sum : 0);
		    max_sum = max(max_sum, temp_sum);
		}
		return max_sum;
    }
};
发布了86 篇原创文章 · 获赞 137 · 访问量 13万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览