业务需求(使用背景):
- 实现搜索引擎前缀搜索功能(中文,拼音前缀查询及简拼前缀查询功能)
- 实现摘要全文检索功能,及标题加权处理功能(按照标题权值高内容权值相对低的权值分配规则,按照索引的相关性进行排序,列出前20条相关性最高的文章)
一、搜索引擎前缀搜索功能:
中文搜索:
1、搜索“刘”,匹配到“刘德华”、“刘斌”、“刘德志”
2、搜索“刘德”,匹配到“刘德华”、“刘德志”
小结:搜索的文字需要匹配到集合中所有名字的子集。
全拼搜索:
1、搜索“li”,匹配到“刘德华”、“刘斌”、“刘德志”
2、搜索“liud”,匹配到“刘德华”、“刘德”
3、搜索“liudeh”,匹配到“刘德华”
小结:搜索的文字转换成拼音后,需要匹配到集合中所有名字转成拼音后的子集
简拼搜索:
1、搜索“w”,匹配到“我是中国人”,“我爱我的祖国”
2、搜索“wszg”,匹配到“我是中国人”
小结:搜索的文字取拼音首字母进行组合,需要匹配到组合字符串中前缀匹配的子集
解决方案:
方案一:将“like”搜索的字段的中、英简拼、英全拼 分别用索引的三个字段来进行存储并且不进行分词,最简单直接(倒排索引存储它们本身数据),检索索引数据的时候进行 通配符查询(like查询),从这三个字段中分别进行搜索,查询匹配的记录然后返回。(优势:存储格式简单,倒排索引存储的数据量最少。缺点:like索引数据的时候开销比较大 prefix 查询比 term 查询开销大得多)
方案二:将中、中简拼、中全拼 用一个字段衍生出三个字段(multi-field)来存储三种数据,并且分词器filter采用edge_ngram类型对分词的数据进行,然后处理存储到倒排索引中,当检索索引数据时,检索所有字段的数据。(优势:格式紧凑,检索索引数据的时候采用term 全匹配规则,也无需对入参进行分词,查询效率高。缺点:采用以空间换时间的策略,但是对索引来说可以接受。采用衍生字段来存储,增加了存储及检索的复杂度,对于三个字段搜索会将相关度相加,容易混淆查询相关度结果)
方案三:将索引数据存储在一个不需分词的字段中(keyword), 生成倒排索引时进行三种类型倒排索引的生成,倒排索引生成的时候采用edge_ngram 对倒排进一步拆分,以满足业务场景需求,检索时不对入参进行分词。(优势:索引数据存储简单,,检索索引数据的时只需对一个字段 采用term 全匹配查询规则,查询效率极高。缺点:采用以空间换时间的策略——比方案二要少,对索引数据来说可以接受。)
ES 针对这一业务场景解决方案还有很多种,先列出比较典型的这三种方案,选择方案三来进行处理。
准备工作:
- pinyin分词插件安装及参数解读
- ElasticSearch edge_ngram 使用
- ElasticSearch multi-field 使用
- ElasticSearch 多种查询特性熟悉
代码:
baidu_settings.json:
-
{
-
"refresh_interval":"3s",
-
"number_of_replicas":1,
-
"number_of_shards":5,
-
"analysis":{
-
"filter":{
-
"autocomplete_filter":{
-
"type":"edge_ngram",
-
"min_gram":1,
-
"max_gram":15
-
},
-
"pinyin_first_letter_and_full_pinyin_filter" : {
-
"type" : "pinyin",
-
"keep_first_letter" : true,
-
"keep_full_pinyin" : false,
-
"keep_joined_full_pinyin": true,
-
"keep_none_chinese" : false,
-
"keep_original" : false,
-
"limit_first_letter_length" : 16,
-
"lowercase" : true,
-
"trim_whitespace" : true,
-
"keep_none_chinese_in_first_letter" : true
-
},
-
"full_pinyin_filter" : {
-
"type" : "pinyin",
-
"keep_first_letter" : true,
-
"keep_full_pinyin" : false,
-
"keep_joined_full_pinyin": true,
-
"keep_none_chinese" : false,
-
"keep_original" : true,
-
"limit_first_letter_length" : 16,
-
"lowercase" : true,
-
"trim_whitespace" : true,
-
"keep_none_chinese_in_first_letter" : true
-
}
-
},
-
"analyzer":{
-
"full_prefix_analyzer":{
-
"type":"custom",
-
"char_filter": [
-
"html_strip"
-
],
-
"tokenizer":"keyword",
-
"filter":[
-
"lowercase",
-
"full_pinyin_filter",
-
"autocomplete_filter"
-
]
-
},
-
"chinese_analyzer":{
-
"type":"custom",
-
"char_filter": [
-
"html_strip"
-
],
-
"tokenizer":"keyword",
-
"filter":[
-
"lowercase",
-
"autocomplete_filter"
-
]
-
},
-
"pinyin_analyzer":{
-
"type":"custom",
-
"char_filter": [
-
"html_strip"
-
],
-
"tokenizer":"keyword",
-
"filter":[
-
"pinyin_first_letter_and_full_pinyin_filter",
-
"autocomplete_filter"
-
]
-
}
-
}
-
}
-
}
baidu_mapping.json
-
{
-
"baidu_type": {
-
"properties": {
-
"full_name": {
-
"type": "text",
-
"analyzer": "full_prefix_analyzer"
-
},
-
"age": {
-
"type": "integer"
-
}
-
}
-
}