Tensorflow Mask-RCNN(三)——实时 检测视频

本文详细介绍了使用Tensorflow实现Mask-RCNN进行实时视频物体检测的步骤,包括模型训练、视频读取和帧处理,展示了如何在每一帧上应用预训练模型进行目标分割和定位。
摘要由CSDN通过智能技术生成


import cv2
import numpy as np


def random_colors(N):
    np.random.seed(1)
    colors=[tuple(255*np.random.rand(3)) for _ in range(N)]
    return colors

def apply_mask(image, mask, color, alpha=0.5):
    """Apply the given mask to the image.
    """
    for n, c in enumerate(color):
        image[:, :, n] = np.where(
            mask == 1,
            image[:, :, n] *(1 - alpha) + alpha * c,
            image[:, :, n]
        )
    return image

def display_instances(image,boxes,masks,ids,names,scores):
    n_instances=boxes.shape[0]
    if not n_instances:
        print('No instances to display')
    else:
        assert boxes.shape[0] == masks.shap
评论 19
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值