C++调用mask rcnn进行实时检测--opencv4.0

本文介绍了如何在C++中利用OpenCV4.0调用预先训练的Mask R-CNN模型进行实时物体检测。通过加载mask_rcnn_inception_v2_coco_2018_01_28的模型文件,实现了从USB摄像头获取图像并进行检测。然而,实验结果显示检测速度较慢,I7-8700k配GTX1060的环境下,每帧检测耗时约1秒,无法满足实时需求。完整数据集可在作者提供的链接中下载,同时邀请读者加入3D视觉工坊进行深入交流。
摘要由CSDN通过智能技术生成

介绍

Opencv在前面的几个版本中已经支持caffe、tensorflow、pytorch训练的几种模型,包括分类和物体检测模型(SSD、Yolo),针对tensorflow,opencv与tensorflow object detection api对接,可以通过该api训练模型,然后通过opencv调用,这样就可以把python下的环境移植到C++中。

关于tensorflow object detection api,后面博文会详细介绍

数据准备与环境配置

基于mask_rcnn_inception_v2_coco_2018_01_28的frozen_inference_graph.pb,这个模型在tensorflow object detection api中可以找到,然后需要对应的mask_rcnn_inception_v2_coco_2018_01_28.pbtxt,以及colors.txt,mscoco_labels.names。

opencv必须是刚发布的4.0版本,该版本支持mask rcnn和faster rcnn,低版本不支持哦,注意opencv4.0中在配置环境时,include下少了一个opencv文件夹,只有opencv2,这是正常的。

好了,废话不多说了,直接上源代码,该代码调用usb摄像头进行实时检测,基于单幅图像的检测修改下代码即可。


#include <fstream>
#include <sstream>
#include <iostream>
#include <string.h>

#include <opencv2/dnn.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>


using namespace cv;
using namespace dnn;
using namespace std;

// Initialize the parameters
float confThreshold = 0.5; // Confidence threshold
float maskThreshold = 0.3; // Mask threshold

vector<string> classes;
vector<Scalar> colors;

// Draw the predicted bounding box
void drawBox(Mat& frame, int classId, float conf, Rect box, Mat& objectMask);

// Postprocess the neural network's output for each frame
void postprocess(Mat& frame, const vector<Mat>& outs);

int main()
{
	// Load names of classes
	string classesFile = "./mask_rcnn_inception_v2_coco_2018_01_28/mscoco_labels.names";
	ifstream ifs(classesFile.c_str(
评论 38
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值