26、信息论中多种概念的深入剖析与应用探讨

信息论中多种概念的深入剖析与应用探讨

1. 互信息局部化的替代方法

在互信息的局部化研究中,存在多种方法。有一种替代方法提出了部分局部化的概念,计算特定值 $y_n$ 关于变量 $X$ 可能取值的信息量 $I(y_n; X)$,并且要求该部分局部化值在 $y_n$ 上的平均值等于平均互信息 $I(Y; X)$,即:
$I(Y; X) = \sum_{y_n} p(y_n)I(y_n; X)$

满足此要求的传统表达式为:
$I_1(y_n; X) = \sum_{x_n} p(x_n | y_n) \log_2 \frac{p(x_n | y_n)}{p(x_n)}$

同时,还有一种替代的部分局部互信息,定义为已知 $y_n$ 时 $X$ 的不确定性的减少:
$I_2(y_n; X) = H_X - H_{X|y_n}$
进一步展开可得:
$I_2(y_n; X) = -\sum_{x_n} p(x_n) \log_2 p(x_n) + \sum_{x_n} p(x_n | y_n) \log_2 p(x_n | y_n)$

虽然 $I_1$ 和 $I_2$ 都满足上述约束条件,但它们对于 $I(y_n; X)$ 给出了不同的值。重要的是,$I_1$ 是非负的,而 $I_2$ 独特地满足了多源信息的可加性:
$I({y_n, z_n} ; X) = I(y_n; X) + I(z_n; X | y_n)$

1.1 完全局部化的情况

在完全局部化中,计算值 $y_n$ 关于变量 $X$ 在时间步 $n$ 实际取值 $x_n$ 的信息量 $i(y_n; x_n)$

基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析仿真验证相结合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值