基于方差的粒子群优化算法及乳腺癌预测研究
1. 基于方差的粒子群优化算法(VPSO)
1.1 算法原理
为解决粒子群算法陷入局部最小值的问题,采用动态策略更新粒子速度。当种群方差较小时,意味着粒子趋于收敛到某一点,这可能是局部最小值。为摆脱这种局部陷阱,需增加粒子速度,使其跳出局部陷阱,从而增强在大搜索空间中的探索能力。在提出的策略中,当种群方差高时,粒子更多地进行开发(趋于收敛);当方差低时,粒子探索更大的搜索空间,实现了对探索和开发的动态控制。
第 $i$ 个粒子的速度根据以下公式计算和更新:
$v_{id}^{k + 1} = v_{id}^{k + 1} \times exp^{-\lambda\times variance^{k}}$
其中,$variance^{k}$ 表示第 $k$ 次迭代时的方差,$\lambda \geq 0$ 是一个权重参数,为种群方差提供相对权重。
1.2 VPSO 算法步骤
以下是 VPSO 算法的具体步骤:
|步骤|操作|
|----|----|
|1|使用均匀随机数生成器初始化粒子 $X$。|
|2|将速度向量 $V$ 初始化为常数正数(如 0.1),并设置 $\lambda = 1$。|
|3|计算第 $i$ 个粒子的适应度 $f(X_{i})$ 并赋值给 $Posi$。对于函数优化,它可能是目标值;对于特征选择,$f(X_{i}) = \alpha \times(100 - accuracy)/100 + (1 - \alpha) \times(n - |F|)/n$,其中 $|F|$ 表示所选特征集的大小。|
订阅专栏 解锁全文
10

被折叠的 条评论
为什么被折叠?



