基于方差的粒子群优化算法与乳腺癌预测技术
基于方差的粒子群优化算法(VPSO)
在优化问题中,粒子群优化算法(PSO)常面临陷入局部最小值的问题。为解决这一问题,提出了基于方差的粒子群优化算法(VPSO),该算法采用动态策略更新粒子速度,实现对探索和开发的动态控制。
VPSO算法原理
当种群方差较小时,意味着粒子趋于收敛到一个可能的局部最小值点。为避免陷入该局部最小值,需要增加粒子的速度,使粒子跳出局部陷阱,从而增强在大搜索空间中的探索能力。反之,当种群方差较大时,粒子更倾向于收敛,进行开发操作。
在VPSO中,第 $i$ 个粒子的速度先根据公式计算,然后通过以下公式动态更新:
$v_{id}^{k + 1} = v_{id}^{k + 1} \times exp^{-\lambda\times variance^k}$
其中,$variance^k$ 表示第 $k$ 次迭代时的方差,$\lambda \geq 0$ 是一个权重参数,为种群方差提供相对权重。粒子的状态则通过另一个公式计算。
VPSO算法步骤
以下是VPSO算法的详细步骤:
1. 输入 :粒子数量 $S$、$n$ 维搜索空间中的粒子 $X$、速度向量 $V$、最大迭代次数 $T$、数据集或函数 $D$ 以及参数 $C_1$、$C_2$、$\omega$。
2. 输出 :全局最优粒子 $Pos_g$。
3. 具体步骤 :
1. 使用均匀随机数生成器初始化粒子 $X$。
订阅专栏 解锁全文
12

被折叠的 条评论
为什么被折叠?



