SVM向量机——预测乳腺癌

 

SVC类是用来进行分类的任务, SVR 类是用来进行数值回归任务的

SVM选择的核函数由参数kernel指定
线性核函数,指定参数C,表示对不符合最大间距规则的样本的惩罚力度
多项式核函数,指定参数C,degree(阶数)
高斯核函数,指定参数C,gamma
 

#画出分隔超平面
import numpy as np
def plot_hyperplane(clf, X, y, h=0.02, draw_sv=True, title='hyperplan'):
    # create a mesh to plot in
    x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
    y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h),np.arange(y_min, y_max, h))
    # meshgrid():把x,y数据生成mesh网格状的数据,因为等高线的显示是在网格的基础上添加上高度值

    #np.arange()函数分为一个参数,两个参数,三个参数三种情况
    #1)一个参数时,参数值为终点,起点取默认值0,步长取默认值1。
    #2)两个参数时,第一个参数为起点,第二个参数为终点,步长取默认值1。
    #3)三个参数时,第一个参数为起点,第二个参数为终点,第三个参数为步长。其中步长支持小数

    plt.title(title)
    plt.xlim(xx.min(), xx.max())
    plt.ylim(yy.min(), yy.max())
    plt.xticks(())#x轴刻度
    plt.yticks(())#y轴刻度

    Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # SVM的分割超平面   
    #ravel():将多维数组转换为一维数组
    #np.r_是按列连接两个矩阵,就是把两矩阵上下相加,要求列数相等。
    #np.c_是按行连接两个矩阵,就是把两矩阵左右相加,要求行数相等。
    
    # Put the result into a color plot
    Z = Z.reshape(xx.shape)
    plt.contourf(xx, yy, Z, cmap='hot', alpha=0.5) # 填充等高线
    #contour和contourf都是画三维等高线图的,不同点在于contour() 是绘制轮廓线,contourf()会填充轮廓。
    
    markers = ['o', 's', '^']
    colors = ['b', 'r', 'c']
    labels = np.unique(y)
    for label in labels:
        plt.scatter(X[y==label][:, 0], X[y==label][:, 1], c=colors[label], marker=markers[label])
    # 画出支持向量
    if draw_sv:
        s
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值