SVC类是用来进行分类的任务, SVR 类是用来进行数值回归任务的
SVM选择的核函数由参数kernel指定
线性核函数,指定参数C,表示对不符合最大间距规则的样本的惩罚力度
多项式核函数,指定参数C,degree(阶数)
高斯核函数,指定参数C,gamma
#画出分隔超平面
import numpy as np
def plot_hyperplane(clf, X, y, h=0.02, draw_sv=True, title='hyperplan'):
# create a mesh to plot in
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),np.arange(y_min, y_max, h))
# meshgrid():把x,y数据生成mesh网格状的数据,因为等高线的显示是在网格的基础上添加上高度值
#np.arange()函数分为一个参数,两个参数,三个参数三种情况
#1)一个参数时,参数值为终点,起点取默认值0,步长取默认值1。
#2)两个参数时,第一个参数为起点,第二个参数为终点,步长取默认值1。
#3)三个参数时,第一个参数为起点,第二个参数为终点,第三个参数为步长。其中步长支持小数
plt.title(title)
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
plt.xticks(())#x轴刻度
plt.yticks(())#y轴刻度
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # SVM的分割超平面
#ravel():将多维数组转换为一维数组
#np.r_是按列连接两个矩阵,就是把两矩阵上下相加,要求列数相等。
#np.c_是按行连接两个矩阵,就是把两矩阵左右相加,要求行数相等。
# Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.contourf(xx, yy, Z, cmap='hot', alpha=0.5) # 填充等高线
#contour和contourf都是画三维等高线图的,不同点在于contour() 是绘制轮廓线,contourf()会填充轮廓。
markers = ['o', 's', '^']
colors = ['b', 'r', 'c']
labels = np.unique(y)
for label in labels:
plt.scatter(X[y==label][:, 0], X[y==label][:, 1], c=colors[label], marker=markers[label])
# 画出支持向量
if draw_sv:
s