转载自:http://blog.csdn.net/randyjiawenjie/article/details/6772145 觉得很好,收藏了
二叉树的常见问题有如下几个,如果解决好了,就跟链表一样轻松:唯一不一样的是,二叉树是非线性结构。常见的问题如下
- 1.二叉树三种周游(traversal)方式:
- 2.怎样从顶部开始逐层打印二叉树结点数据
- 3.如何判断一棵二叉树是否是平衡二叉树
- 4.设计一个算法,找出二叉树上任意两个节点的最近共同父结点,复杂度如果是O(n2)则不得
- 分。
- 5.如何不用递归实现二叉树的前序/后序/中序遍历?
- 6.在二叉树中找出和为某一值的所有路径
- 7.怎样编写一个程序,把一个有序整数数组放到二叉树中?
- 8.判断整数序列是不是二叉搜索树的后序遍历结果
- 9.求二叉树的镜像
- 10.一棵排序二叉树(即二叉搜索树BST),令 f=(最大值+最小值)/2,设计一个算法,找出距
- 离f值最近、大于f值的结点。复杂度如果是O(n2)则不得分。
- 11.把二叉搜索树转变成排序的双向链表
- 12.打印二叉树中的所有路径(与题目5很相似)
解决思路:
1.二叉树三种周游(traversal)方式:任何一本数据结构的书都有描述,略过;
2.怎样从顶部开始逐层打印二叉树结点数据?
设置一个队列,然后只要队列不为空,将对首元素的左右孩子加入队列(如果左右孩子不为空),然后将队列的首元素出对即可,如下图所示:
二叉树如下图所示:
那么,整个过程如下:
自然,就输出了a,b,c,d,e,f
3.如何判断一个二叉树是否是平衡的?
太简单了,利用递归就可以了:判断根节点的左右子树深度之差是否小于等于1(这里需要用到求深度的方法),如果是,根节点就是平衡的;然后,在判断根节点的左孩子和右孩子是否是平衡的。如此继续下去,直到遇见叶子节点。一旦不是,立刻返回false;
计一个算法,找出二叉树上任意两个节点的最近共同父结点,复杂度如果是O(n2)则不得分
首先找到这两个点key1和key2,并且记录下找到这两个点的路径Path1和Path2。然后,找到第一个点k满足,key1<k<key2就可以了。
如图:
假设key1 = 5,key2 = 7,那么显然,Path1{8,6,5}, Path2{8,6,7}。满足第一个key1<k<key2的k为6。故k = 6。
至于怎么求出Path1和Path2,可以看问题12。
5.如何不用递归实现二叉树的前序/后序/中序遍历?(网易面试就问到了,悲剧了,当时一下子卡住了)
看看书,基本任何一本数据结构的书都有,主要利用栈。
6.在二叉树中找出和为某一值的所有路径?
还是先解决12题目,访问二叉树到叶子节点的任意路径。这个问题解决了,自然求和看是否满足条件就可以了。
7.怎样编写一个程序,把一个有序整数数组放到二叉树中?
递归,还是利用递归:
设有int array[begin,end],首先将array[(begin + end)/2]加入二叉树,然后递归去做array[begin,(begin + end)/2 - 1]和array[(begin + end)/2 + 1, end]。注意写好函数的形式就可以了。一切都很自然。
8.判断整数序列是不是二叉搜索树的后序遍历结果?
看看吧,后续遍历是这样做的:左右根,所以访问的最有一个节点实际上就是整棵二叉树的根节点root:然后,找到第一个大于该节点值的根节点b,b就是root右子树最左边的节点(大于根节点的最小节点)。那么b前面的就是root的左子树。既然是二叉搜索树的遍历结果,那么在b和root之间的遍历结果,都应该大于b。去拿这个作为判断的条件。
9.求二叉树的镜像?
还是利用递归:只要节点不为空,交换左右子树的指针,然后在分别求左子树的镜像,再求右子树的镜像,直到节点为NULL。
10.一棵排序二叉树(即二叉搜索树BST),令 f=(最大值+最小值)/2,设计一个算法,找出距离f值最近、大于f值的结点。复杂度如果是O(n2)则不得分。
首先,在BST中,最小值就是最左边的节点,最大值就是最右边的节点。在分别求出min和max后,求出f。然后利用查找,找出一个大于f的节点就可以了。
复杂度为logN。
11.把二叉搜索树转变成排序的双向链表
12..打印二叉树中的所有路径
路径的定义就是从根节点到叶子节点的点的集合。
还是利用递归:用一个list来保存经过的节点,如果已经是叶子节点了,那么打印list的所有内容;如果不是,那么将节点加入list,然后继续递归调用该函数,只不过,入口的参数变成了该节点的左子树和右子树。
程序如下
- 解答1:自己看书了
- 解答2:
- //问题2:怎样从顶部开始逐层打印二叉树结点数据
- void PrintAtLevel(BiTNode* root){
- vector<BiTNode*> vector;
- vector.push_back(root);
- while(!vector.empty()){
- BiTNode* tmp = vector.front();
- if(tmp->lchild != NULL)
- vector.push_back(tmp->lchild);
- if (tmp->rchild != NULL)
- vector.push_back(tmp->rchild);
- cout << tmp->data << endl;
- vector.pop_back();
- }
- }
- //问题3:如何判断一棵二叉树是否是平衡二叉树
- int isBalencedTree(treeNode* root){
- if (root == NULL)
- return 0;
- int depth1 = getDepth(root->lchild);
- int depth2 = getDepth(root->rchild);
- if (depth1 == depth2 || depth1 == depth2 + 1 || depth1 == depth2 - 1)
- return 1;
- else
- return 0;
- int flag1 = isBalencedTree(root->lchild);
- int flag2 = isBalencedTree(root->rchild);
- if (flag1 && flag2)
- return 1;
- else