
数学
文章平均质量分 85
数学是研究数量、结构、变化、空间以及信息等概念的学科,历史可追溯到古希腊时期。在人类历史发展和社会生活中发挥着不可替代的作用,现代科学技术必不可少的工具。数学的本质在于抽象和严谨。它通过抽象的方式,将现实世界中的数量、结构、变化等概念转化为数学对象,并通过严谨的逻辑推理来探究这些对象的性质和和关系。
109702008
数字人-幺洞勾拐洞两洞洞八
展开
-
9.9包邮:电商促销的双刃剑
"9.9包邮"作为一种低价促销模式,已经成为中国电商生态中的重要组成部分。它不仅为消费者提供了实惠的购物选择,也为商家和平台带来了流量和销量的增长。然而,随着市场竞争的加剧和消费者需求的升级,"9.9包邮"模式也需要不断创新和优化,才能在未来的电商生态中持续发挥其价值。对于消费者来说,在享受"9.9包邮"带来的便利和实惠的同时,也需理性消费,避免因低价而购买不必要的商品。对于商家和平台来说,如何在低价促销与品质保障之间找到平衡点,将是未来发展的关键。原创 2025-02-04 00:30:00 · 1780 阅读 · 0 评论 -
区块链技术
它引入了权益证明(Proof of Stake, PoS)机制取代原有的工作量证明(Proof of Work, PoW),新标志下的“信标链”(Beacon Chain)构建了新的共识算法环境。这确保了区块链中的数据可验证但不可篡改。综合上述内容,加密技术在现代通信和信息安全领域扮演着至关重要的角色,通过采用适当的加密算法和密钥管理策略,可以有效保障数据的机密性、完整性和真实性。- 为什么用它: 在一些私有和许可区块链中,对称加密(如AES)用于保护节点间的通信,确保数据传输过程中不被拦截和读取。原创 2024-10-31 03:15:00 · 1611 阅读 · 0 评论 -
274471是素数吗?
对于较小的数字,可以通过简单的试除法进行判断,但对于较大的数字,则需要更高效的算法,比如Miller-Rabin素性测试。为了确定它是否是素数,我们需要继续试除更大的素数,直到达到它的平方根(大约是524,因为524^2 = 274576,略大于274471)。对于274471这个数,我们可以检查从2开始到它的平方根之间的所有数,看是否有能整除它的数。如果不能,则它是素数。但是,在这个特定的情况下,我们可以先排除一些明显的非素数情况,比如偶数(除了2以外)和能被3整除的数(即各位数字之和能被3整除的数)。原创 2024-08-05 07:25:16 · 1280 阅读 · 0 评论 -
关于比特币的AI对话
由于比特币的代码库相当大,详细讲解其实现细节超出了普通解答的范畴,但对于有特定编程和加密背景的人来说,直接查看和分析源码会是一种非常宝贵的学习经验。实际上,比特币作为一种去中心化的加密货币,它的源代码是完全开源的,这意味着任何人都可以无需任何特殊授权或许可就能访问、查看和使用这些代码。总之,保护比特币源代码的安全是至关重要的,以确保比特币系统的稳定和安全运行。是的,比特币的源码是开源的。需要注意的是,随着区块链技术的不断发展和普及,越来越多的编程语言和工具被用于区块链的开发和实现。原创 2024-03-07 06:25:23 · 1819 阅读 · 4 评论 -
【fortran】开源BLAS库矩阵乘法的简单Fortran示例
alpha = 1.0d0` 表示 不改变`A`和`B`相乘的结果,A 和 B 的乘积将直接存储在 C 中,`beta = 0.0d0` 意味着原始的`C`矩阵不会对结果产生影响。- double precision :: alpha, betadouble precision :: A(n, n), B(n, n), C(n, n) 声明了三个双精度矩阵`A`、`B`和`C`。- n, n, n: 分别表示矩阵A的行数,矩阵B的列数和共同的维度(A的列数和B的行数,这里A和B都是3x3矩阵)。原创 2024-02-11 18:40:42 · 1630 阅读 · 1 评论 -
【matalab】基于Octave的信号处理与滤波分析案例
提供的案例代码基本上也可以在MATLAB中运行,因为Octave与MATLAB非常相似,很多基本的函数和语法是通用的。这段代码使用了标准的信号处理函数,如`sin`、`randn`和`filter`,这些在MATLAB的信号处理工具箱中也是存在的。在Octave中运行以上代码,可以看到这三个信号的对比,它展示了滤波器如何有效地移除噪声并保留原始信号的形状。一个简单的信号处理与滤波分析案例,说明如何在Octave中生成一个有噪声的信号,并设计一个滤波器来去除噪声。首先,确保安装了Octave。原创 2024-02-11 10:29:40 · 1772 阅读 · 0 评论 -
【线性代数】通过矩阵乘法得到的线性方程组和原来的线性方程组同解吗?
如果你使用一个可逆矩阵 P 与线性方程组 Ax = b 的增广矩阵 [A | b] 相乘,即计算 PAx = Pb,且 P 为方程组系数矩阵 A 同阶的可逆矩阵,那么新的增广矩阵所表示的线性方程组将与原始的线性方程组具有相同的解集。换句话说,如果你将原始系数矩阵 A 通过左乘以一个可逆矩阵 M 来转换成 MA,且同样将常数项向量 b 转化为 Mb,那么新的线性方程组 MAx = Mb 与原始的 Ax = b 同解,因为你可以通过乘以 M 的逆矩阵 M⁻¹ 来恢复原始的方程组。行变换不改变方程组的解。原创 2023-12-27 22:52:45 · 2358 阅读 · 1 评论 -
【线性代数】决定张成空间的最少向量线性无关吗?
如果这组向量是线性无关的(即它们不能被其他向量线性组合得到),那么它们就构成了张成空间的一组基,也就是说,它们生成了整个向量空间。因此,如果你有一个由最少量的向量张成的空间,这些向量必须是线性无关的,否则,如果存在线性相关的向量,那么至少有一个向量是多余的(可以被其他向量线性表示),这意味着你并没有使用最少量的向量,因此组成的不是基。是的,决定张成空间的最少向量组称为该空间的一组基。所以,决定张成空间的最少向量必然构成一组线性无关的向量,即该空间的一组基。是的,决定张成空间的最少向量是线性无关的。原创 2023-12-23 15:40:20 · 1052 阅读 · 2 评论 -
【线性代数】两个向量组等价,其中一个向量组线性无关,另一个向量组也是线性无关吗?
具体来说,如果我们有一组线性无关的向量集合 V = {v1, v2, ..., vn},我们通过某种线性变换 T 得到另一组向量集合 V' = {T(v1), T(v2), ..., T(vn)},只要这种变换 T 是可逆的(也即是说,它有一个逆变换 T^(-1)),那么 V' 也是线性无关的。如果我们有一组线性无关的向量,我们对这些向量进行任何线性变换(比如旋转、缩放、反射等),而这些变换没有使任一向量变成零向量或者使得某些向量变成了其它向量的线性组合,那么变换后的向量组依然保持着线性无关的属性。原创 2023-12-19 22:21:40 · 2871 阅读 · 0 评论 -
反三角函数
反三角函数指三角函数的反函数,由于基本三角函数具有周期性,所以反三角函数是多值函数。但是,在实函数中一般只研究单值函数,只把定义在包含锐角的单调区间上的基本三角函数的反函数,称为反三角函数,这是亦称反圆函数。import numpy as npimport matplotlib.pyplot as pltx = np.linspace(-1,1,num = 10000)y1 = np...原创 2019-11-07 17:57:51 · 1544 阅读 · 0 评论 -
三角函数
三角函数是以角度为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。import numpy as npimport matplotlib.pyplot as pltx = np.linspace(-np.pi,2*np.pi,num = 1000)y1 = np.sin(x)y2 = np.cos(x)plt.axis([0,7,-1.5,1.5])plt....原创 2019-11-07 17:42:55 · 374 阅读 · 0 评论 -
对数函数
如果ax =N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。函数y=logaX(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。import mathimport numpy as npimport matplotlib.pyplot ...原创 2019-11-05 17:43:45 · 1708 阅读 · 0 评论 -
【python】指数函数
函数(a为常数,且a>0,a≠1)叫做指数函数。import numpy as npimport matplotlib.pyplot as pltx = np.linspace(-2,2,num = 1000)y1 = 3**xy2 = 2**xplt.axis([-2,2,0,5])plt.plot(x,y1,'r',x,y2,'y')plt.text(1.4,5,r...原创 2019-11-05 14:48:18 · 2407 阅读 · 1 评论 -
幂函数
幂函数:(a为有理数)的函数,幂为因变量,指数为常数。import numpy as npimport matplotlib.pyplot as pltx = np.linspace(-10,100,num = 1000)y1 = np.power(x,3)y2 = np.power(x,2)plt.axis([-1.5,1.5,-1.5,1.5])plt.plot(x,y1...原创 2019-11-05 14:21:51 · 554 阅读 · 0 评论